ON NORMAL PSEUDO-IDEALS IN SEMIGROUPS.

T. K. Dutta

1. Introduction.

A semigroup S is called normal if Sx=xS for all elements x of S [7]. A pseudo-ideal A of a semigroup S is called normal if A is a normal subsemigroup of S i. e. if xA=Ax for all $x \in A$. In this paper we have studied some properties of normal pseudo-ideals. The purpose of this paper is to give some properties which characterise normal semigroups and normal regular semigroups in terms of normal pseudo-ideals and bi-ideals.

Let NB(S) denote the set of all normal pseudo-ideals and bi-ideals of a semi-

- group S. Then NB (S) is a semigroup under the multiplication of subsets and N (S), the set of all normal pseudo-ideals of S is a commutative subsemigroup of NB (S). We have shown that a semig oup S is normal if and only if NB (S) is normal. Lastly we have characterised regularity of all those semigroups in which all the pseudo-ideals are normal.
- 2. In [8] Sen has shown that in a group every pseudo-ideal is a normal pseudo-ideal; the result is also true in a commutative semigroup. The following example shows that there are also sen igroups which are neither groups nor commutative semigroups but contain normal pseudo-ideals.
- 2. 1 Example. Let $S=G \times J$ where G is a noncommutative group and J is the set of all integers; then S is a semigroup with respect to the multiplication defined componentwise. Let $A=G \times J^+$ be a subset of S where J^+ denotes the set of all nonnegative integers. Then A is a pseudo-ideal of S. Also for any element x of S, xA=Ax. So A is a normal pseudo-ideal of S.
- 2 2 Proposition. A normal subsemigroup A of a semigroup S will be a pseudo-ideal if and only if $xAx \subseteq A$ for every $x \in S$.

Proof. Let a normal subsemigroup A of a semigroup S be a pseudo-ideal of S $xAx = xxA = x^2A \subseteq A$. On the other hand if for a normal subsemigroup A of a semigroup S, $xAx \subseteq A$ then $x^2A = xxA = xAx \subseteq A$ for every $x \in S$. Similarly $Ax^2 \subseteq A$ for every $x \in S$. So A is a pseudo-ideal of S.

2. 3 Proposition. Every one-sided normal pseudo-ideal of a semigroup S is a pseudoideal (two-sided) of S.

Proof. Let A be a normal left pseudo-ideal of a semigroup S and $x \in S$. Then $Ax^2 = x^2A$ ⊆ A. So A is also a right pseudo-ideal of S. Similarly we can show that if A is a right pseudo-ideal then A is also a left pseudo-ideal. Hence the proposition.

- 2.4 Proposition. Let N (S) denote the set of all normal pseudo-ideals of a semigroup S; then N(S) is a commutative semigroup under the multiplication of subsets.
- **Proof.** Let A_1 , $A_2 \in N(S)$. Let a_1a_2 , $b_1b_2 \in A_1A_2$ where a_1 , $b_1 \in A_1$ and $a_2,b_2 \in A_2$. Then $a_1a_2b_1b_2=a_1b_1a_2'b_2$ ϵ A_1A_2 where $a_2b_1=b_1a_2'$, a_2' ϵ A_2 and also for any x ϵ S x^2 $(A_1A_2) = (x^2A_1)A_2 \subseteq A_1A_2$. So A_1A_2 is a left pseudo-ideal of S. Since A_1 , A_2 are both normal, $x (A_1A_2) = (A_1A_2)x$. Hence $A_1A_2 \in N(S)$. Lastly let $a_1 \in A_1$ then $a_1 A_2 = A_2 a_1$ So $A_1 A_2 = A_2 A_1$. Evidently $A_1 (A_2 A_3) = (A_1 A_2) A_3$. Consequently N (S) is a commutative semigroup.
- 2. 5 Proposition. Let NB (S) denote the set of all normal pseudo-ideals and biideals of a semigroup S; NB (S) is a semigroup under the multiplication of subsets. Proof. It follows from the above proposition that the product of two normal pseudoideals is a normal pseudo-ideal. Also the product of two bi-ideals of S is a bi-ideal [3]. Let $A \in N(S)$ and $B \in B(S)$, the set of all bi-ideals of S. Now (AB) (AB) \Rightarrow A (BAB) \subseteq AB and (AB) S (AB) = AB (SA) B \subseteq AB. So AB ϵ B (S) \subseteq NB (S). Since A is normal AB = BA, So $BA \in NB$ (S). Evidently A (BC) = (AB) C for A, B, $C \in NB$ (S). Hence the proposition.
- 2.6 Proposition. B (S) is an ideal of NB (S).
- **Proof.** Let B ϵ B (S) and X ϵ NB (S). Then (BX) (BX) = (B X B) X \subseteq BX and also (BX) S (BX) = B (XS) BX \subseteq BX So BX is a bi-ideal of S i, e BX ϵ B (S). Consequently B(S) is a right ideal of NB(S). Similarly we can show that B(S) is also a left ideal of NB (S). Hence B (S) is an ideal of NB (S).
- 2.7 Theorem. A semigroup S is normal if and only if NB(S) is normal. **Proof.** Let S be a normal semigroup and X, A ϵ NB (S). Let a ϵ A; then aX \subseteq aS=

Sa \subseteq NB (S). a and so A NB (S) \subseteq NB (S) A. Similarly we can prove that the converse

inclusion holds. Thus we obtain that A NB (S) = NB (S) A for all A ϵ NB (S) So NB (S) is normal. Conversely let NB (S) be normal. In order to prove that S is normal, let $x \epsilon S$. Then for some A ϵ NB (S) we have $xS \subseteq (x)_B S = A(x)_B \subseteq S(x)_B \subseteq Sx$ where $(x)_B = \{xSx \cup x \cup x^2\}$ is the bi-ideal generated by x and hence $(x)_B \epsilon B(S) \subseteq NB(S)$. Similarly we can prove that the converse inclusion holds. So S is normal.

- 2.8 Theorem. Let S be a normal semigroup; then the following conditions are equivalent
- (1) S is a regular semigroup,
- (2) $A \cap B = \overline{B}A$ where A is a left pseudo-ideal and B is a bi-ideal of S,
- (3) $A \cap B = A\bar{B}$ where A is a right pseudo-ideal and B is a bi-ideal of S.

Proof. (1) \Rightarrow (2). Let S be a normal semigroup which is also regular. Let A, B be respectively a left pseudo-ideal and a bi-ideal of S. Then $\overline{B}A \subseteq A$. Let b^2 a ϵ $\overline{B}A$ where b ϵ B and a ϵ A. Since S is normal, bS = Sb. So b^2 a = bba ϵ bbS = bSb \subseteq B. Consequently $\overline{B}A \subseteq B$. Combining the above two inclusions we get $\overline{B}A \subseteq A \cap B$. Conversely, let c ϵ A ϵ B. Since S is regular and normal, c = cxc = cxcxcxcxc (since xc is idempotent, x ϵ S) = cxx₁ c. cxx₁ c. c = (cxx₁ c)² c ϵ $\overline{B}A$ (c ϵ B implies that cxx₁c ϵ B). Therefore A ϵ B ϵ ϵ B. Hence A ϵ B ϵ ϵ B.

(2) \Rightarrow (1). Let $c \in S$. Since S is a left pseudo-ideal we have $S \cap (c) = (c) S$ i, e(c) = (c) S where (c) denotes the ideal generated by c and hence (c) is a bi-ideal of S. Since S is normal, $(c) = \{c \mid xc \mid x \in S\}$ Now $c \in (c) = (c) S$ implies that $c = c^2 y$ or $c \in S$ where x, y, z $\in S$. Since S is normal, we can write c = cxc for some $c \in S$. So c and hence S is regular.

Similarly we can show that (1) and (3) are equivalent. Hence the theorem.

- 2. 9 Lemma. ([6] Corollary II. 4. 12) For an idempotent semigroup S the following conditions are equivalent.
- (1) S is normal
- (2) S is commutative

- 2. 10 Lemma. ([1] Theorem 7.6) Following conditions concerning a regular semigroup S are equivalent.
- (1) S is normal
- (2) es = Se for all idempotents ϵ of S.
- 2.11 Lemma. ([4] Theorem 2) For a semigroup S the following conditions are equivalent.
- (1) S is a semilattice of groups
- (2) S is regular and eS = Se for all idempotents e of S.
- 2. 12 Lemma, ([2]) For a semigroup S the following conditions are equivalent.
- (1) S is regular.
- (2) B (S) is regular.
- 2.13 Theorem. A normal semigroup S is a semilattice of groups if and only if NB (S) is a semilattice.

Proof: Let S be a normal semigroup which is a semilattice of groups. Ther by lemma 2.11 S is regular. Let A ϵ NB (S). If A ϵ N (S) and a ϵ A then a = axa = axaxa (since xa is idempotent, x ϵ S) = ax²a₁ a ϵ AA (a₁ ϵ A) So A \subseteq AA. On the other hand AA \subseteq A So A = AA Again, if A ϵ B (S) and a ϵ A then a = axa = axaxa = a ax₁xa (since S is normal, xa = ax₁) ϵ AA. So A \subseteq AA. Also AA \subseteq A. Hence for all A ϵ NB (S), A = AA. So NB (S) is idempotent. Since S is normal, by theorem 2,7 NB (S) is normal. Hence by lemma 2.9, NB (S) is commutative. Hence NB (S) is a commutative idempotent semigroup i. e, a semilattice. Conversely, let NB (S) be a semilattice. So NB (S) is an idempotent semigroup and hence regular. Since B (S) is an ideal of NB (S), B (S) is also regular. So it follows from lemma 2.12 that S is regular normal semigroup whence by lemma 2.10 and lemma 2.11 it follows that S is a semilattice of groups.

- 2.14 Theorem. For a normal semigroup S the following conditions are equivalent.
- (1) S is regular,
- (2) S is left regular,
- (3) S is right regular,
- (4) S is completely regular,
 - n n-1
- (5) $a = a \times for all a \in S$ and for every integer $n \ge 2$
- (6) NB (S) Is idempotent,
- (7) NB (S) is completely regular,

- (8) NB (S) is regular,
- (9) B (S) is regular.

Proof, It follows from theorem 6.6 of [1] that (1) to (4) are equivalent. Now we assume (4). Let a ϵ S. Then a = axa for some x ϵ S and ax = xa. So 32.

a = a^2 x = aax = aa^2 xx = a x Continuing this we get a = a x for every integer n \geqslant 2

(5) \Rightarrow (6) Let A ϵ NB (S). If A ϵ N (S) and a ϵ A then a = a x = a . ax ϵ AA. So A \subseteq AA Also AA \subseteq A. Thus A = AA. If A ϵ B (S) and a ϵ A then 3 2

a = a x = a a ax = a aya ϵ AA (since S is normal, ax = ya for some y ϵ S). So A \subseteq AA. Also AA \subseteq A. Thus in this case also A = AA. So NB (S) is idempotent. (6) \Rightarrow (7) \Rightarrow (8) are obvious. Next we assume (8). Since B (S) is an ideal of NB (S), B (S) is regular. Lastly we assume (9). Since B (S) is regular, it follows by lemma 2.12 that S is regular.

A semigroup S is called viable if ab=ba whenever ab and ba are idempotents.

A viable semigroup has been studied by M. S. Putcha and J. Weissglass [5]

- 2.15 Lemma. ([1] Theorem 7.6) For a regular semigroup S the following conditions are equivalent.
 - (1) S is normal
 - (2) B (S) is viable
- 2.16 Lemme. ([5] Theorem 6) If a semigroup S is a semilartice of groups then it is viable.
- 2.17 Theorem. A regular semigroup S is normal if and only if NB (S) is viable.

Proof Let S be a regular normal semigroup. Then NB (S) is also normal (Theorem 2.7), Also NB (S) is regular (Theeoem 2.14), So NB (S) is regular and normal. Hence NB (S) is a semilattice of groups. So by lemma 2.16, NB (S) is viable. Conversely we assume that NB (S) is viable. Since the property of being viable is hereditary, it follows that B (S) is viable whence by lemma 2.15 it follows that S is normal.

2.18 Theorem. The following conditions concerning a semigroup S are equivalent.

- (1) S is a semilattice of groups,
- (2) S is regular and normal,
- (3) NB(S) is regular and normal,
- (4) NB(S) is a semilattice of groups,
- (5) NB (S) is regular and viable,
- (6) NB (S) is a completely regular semigroup and every bi-ideal of S is two-sided.
- (7) B (S) Is a completely regular semigroup and every bi-ideal of S is two-sided.

Proof. (1) \Rightarrow (2) follows from the lemma 2.10 and the lemma 2.11.

- (2) \Rightarrow (3) follows from the proposition 2.7 and the theorem 2.14.
- (3) \Rightarrow (4) follows from the lemma 2.10 and the lemma 2.11. (4) \Rightarrow (5) follows from the lemma 2.11 and the lemma 2.16. (5) \Rightarrow (6). Since NB (S) is regular and viable it follows readily that NB (S) is a completely regular semigroup. Also since B (S) is an ideal of NB (S) it follows that B (S) is also regular and viable and so every bideal of S is two-sided (Theorem 7.7 of [1]). (6) \Rightarrow (7) follows since B (S). is an ideal of NB (S). Lastly (7) \Rightarrow (1) follows from the theorem 7.7 of [1]. Hence the theorem.
- 3. In a commutative semigroup or in a group we have noted that every pseudo-ideal is a normal pseudo-ideal. There are also semigroups which are neither commutative semigroups nor groups and in which every pseudo-ideal is normal. In fact the semigroup given in example 2.1 is a semigroup of this type. Now we shall study those semigroups in which every pseudo-ideal is normal. Throughout this article by a semigroup S we shall mean a semigroup in which all the pseudo-ideals are normal.
- 3.1 Theore. A semigroup S will be regular if and only if $A = \overline{A}A$ where A is a pseudo-ideal of S.
- **Proof.** Let S be a regular semigroup and A be a pseudo-ideal of S. Let $a \in A$, Since S is regular a=axa for some $x \in S$. Now a=axa=axaxaxaxa (since xa is idemotent)= ax^2 a_1 ax^2a_1 $a \in AA$ (since A is normal, $ax=xa_1$ for some $a_1 \in A$) So $A \subseteq \overline{A}A$, Also $AA \subseteq A$, Henca AA=A, Conversely we assume that $A=\overline{A}A$ for all pseudo-ideals A of S. Let $a \in S$ and (a) be the ideal generated by a. Since every ideal is a pseudo-ideal (a)= $\overline{(a)}$ (a) Now $a \in (a)=\overline{(a)}$ (a) implies a=axa for seme $x \in S$ (Since S is normal as S is a pseudo-ideal of itself). So a and hence S is regular.
- 3.2 Theorem. The following conditions concerning a semigroup S are equivalent.

- (1) S is regular,
- (2) S is left regular,
- (3) S is right regular,
- (4) S is completely regular,
- (5) $a=a^nx^{n-1}$ for every element **a** ef S and for every integer $n \ge 2$.
- (6) N(S) is idempotent
- (7) N(S) is regnlar

Proof. Since every pseudo-ideal of S is normal S is also normol, so it follows frem the theofem 2.14 that (1) to (5) are equivalent, Now we assume (5). Let A ϵ N(S) and a ϵ A. Then $a=a^3x^2=a^2$. ax^2 ϵ AA. So A \subseteq AA. Also AA \subseteq A. Hence A=AA. So N(S) is idempotent, (6) => (7) is obvious. Lastly we assume (7). Let a ϵ S and (a) be the ideal generated by a. Since (a) ϵ N(S) by our assumption there exists A in N(S) such that (a)=(a) A (a) Now a ϵ (a)=(a) A (a) implies that a=axa for some $x \epsilon$ S. So a and hence S is regular.

I am indebted to Dr. M. K. Sen for his kind help in the preparation of this paper.

REFERENCES

- [1] Kuroki, N: On normal semigreup. Czechoslovak Math J. 27 (102) 1977, Praha, P 43-53
- [2] Luh, J: A characterisation of regular rings, proc. Japan. Acad. 39 (1964) P 741-742
- [3] Lajos, S: On the bi-ideals in semigroups. Proc. Japan. Acad 45 (1969) P 710-712
- [4] Lajos S : Characterisation of semilatices of groups. Math Balkanica 3 (1973) P 310-311
- [5] Putcha, M. S.: A semilattice decomposition into semigroups having at most one fdempotent- Pac. and J. Math 39 1971, P 225-228

Weissglass. J

- [6] Petrich, M : Introduction to semigroups. Bell and Howell company (1973)
- [7] Schwarz, S: A theorem on normal semigroups. Czechoslovak Math. J. 10(35), 1960, P 197-200
- [[∞]] Sen, M. K. : On pseudo-ideals of semigroups. Bull. Cal. Math. Soc. 67, P 109-114 (1975)

Department of Pure Mathematics
University of Calcutta
35. Baliygunge Curcular Road
Calcutta-700 019
INDIA.