

COMMON FIXED POINT THEOREM IN 2-METRIC SPACES

KANAN MAJUMDAR

Introduction : S. Gahler [2] introduced the notion of 2-metric space as follows :

A set X is defined to be 2-metric space, if there exists a real valued function $d : X \times X \times X \rightarrow \mathbb{R}^+$ satisfying the following conditions :

- (i) to each pair of points x, y ($x \neq y$) of X there is one $z \in X$ such that $d(x, y, z) \neq 0$
- (ii) $d(x, y, z) = 0$ only when at least two of three points are equal
- (iii) $d(x, y, z) = d(x, z, y) = d(y, z, x) = \dots$
- (iv) $d(x, y, z) \leq d(x, y, u) + d(x, u, z) + d(u, y, z)$.

In the work of I. Keyoshi [3] we find the following definitions.

Definition 1 : If $d(x, y, z)$ is bounded, the 2-metric space is said to be bounded. By its diameter we mean $\text{Sup } d(x, y, z)$

$x, y, z \in X$

Definition 2 : If $d(x_n, x, a)$ converges to zero for all $a \in X$, we say that the sequence $\{x_n\}$ converges to x and x is a limit of $\{x_n\}$.

Definition 3 : If in a 2-metric space X , $d(x_m, x_n, a) \rightarrow 0$ ($m, n \rightarrow \infty$) for all $a \in X$, the sequence $\{x_n\}$ is called a Cauchy sequence.

If in X , every Cauchy sequence is convergent, X is called complete.

Also in the 2-metric space, the notion of continuity of a self-mapping may be given as follows :

Definition 4 : If in a 2-metric space X , $d(x, x_0, a) \rightarrow 0$ implies $d(Tx, Tx_0, a) \rightarrow 0$ for all $a \in X$, then we say that $T : X \rightarrow X$ is continuous at $x = x_0$.

Here we shall prove a fixed point theorem which is proved for a 1-metric space by B. Fisher [1].

Theorem : Suppose S and T are continuous mappings of the complete and bounded 2-metric space X into itself. If S and T satisfy the condition

$$d(S^a x, T^a y, a) \leq C \max [d(x, Ty, a), d(y, Sx, a), d(x, y, a)]$$

for all x, y, a in X , where $0 < C < 1$. Then S and T have a unique common fixed point u .

Proof: Let x be any arbitrary point in X . Then

$$\begin{aligned} d(S^n x, T^r x, a) \\ \leq C \max [d(S^{n-2} x, T^{r-1} x, a), d(S^{n-1} x, T^{r-2} x, a), d(S^{n-2} x, T^{r-2} x, a)] \\ \leq C^2 \max [d(S^{n-4} x, T^{r-3} x, a), d(S^{n-3} x, T^{r-4} x, a), \\ d(S^{n-4} x, T^{r-3} x, a), d(S^{n-2} x, T^{r-4} x, a), \\ d(S^{n-3} x, T^{r-4} x, a), d(S^{n-4} x, T^{r-4} x, a)] \end{aligned}$$

and so on, till powers of S and T do not become negative.

Since X is bounded,

$$M = \text{Sup} [d(x, y, a), x, y, a \in X] < \infty.$$

For arbitrary $\epsilon > 0$, choose N so that $C^N M < \epsilon/3 = (\epsilon/3)^{1/(N-1)}$.

$$\therefore d(S^n x, T^r x, a) \leq \epsilon/3 \text{ for } n, r \geq 2N$$

and so $d(S^n x, S^m x, a) \leq d(S^n x, T^r x, a) + d(T^r x, S^m x, a)$

$$\leq 2\epsilon/3 + d(S^n x, T^r x, S^m x)$$

$$\leq 2\epsilon/3 + C^N M$$

$$\leq 2\epsilon/3 + \epsilon/3 = \epsilon$$

for $m, n, r \geq 2N$.

Hence $\{S^n x\}$ is a Cauchy sequence in the complete 2-metric space X and so has a limit u in X . Since S is continuous $Su = u$ and so u is a fixed point of S .

Similarly $\{T^n x\}$ is a Cauchy sequence in X and since $d(S^n x, T^n x, a) \leq \epsilon/3$ for $n \geq 2N$, the sequence $\{T^n x\}$ also converges to u .

As T is continuous, $Tu = u$ and so u is a common fixed point of S and T .

If possible, let w be another common fixed point of S and T . Then

$$\begin{aligned} d(u, w, a) &= d(S^2 u, T^2 w, a) \\ &\leq C \max [d(u, Tw, a), d(Su, w, a), d(u, w, a)] \\ &= C d(u, w, a). \end{aligned}$$

As $C < 1$, $u = w$ and so the common fixed point is unique.

Corollary: Let S and T be continuous mappings of the complete and bounded 2-metric space X into itself satisfying the inequality

$$d(S^2 x, T^2 y, a) \leq C \max [d(x, Ty, a), d(y, Sx, a)] \text{ for all } x, y, a \in X,$$

where $0 < C < 1$.

Then S and T have a unique common fixed point.

Proof: Since $d(S^2x, T^2y, a) \leq C \max [d(x, Ty, a), d(y, Sx, a)]$
 $\leq C \max [d(x, Ty, a), d(y, Sx, a), d(x, y, a)]$

for all x, y in X , the result follows from the theorem (above).

Acknowledgement: I am indebted to Dr. S. K. Chatterjea for his helpful discussion during the preparation of this paper.

REFERENCES

- [1] Fisher, B.—Common fixed point mappings on complete and compact metric spaces, *Math. Japonica*, **22**, No. 5 (1978), 565-569.
- [2] Gahler, S.—2 Metrische Raume and ihre topologische struktur, *Math. Nachr.*, **26** (1963/64), 115-148.
- [3] Kiyoshi, I.—Fixed point theorem in 2-metric spaces, *Mathematics Seminar Notes*, **3** (1975), 133-136.

Received
28. 7. 1982

Dept. of Pure Math.
Calcutta University