CHARACTERIZATION OF GROUPS

M. K. SEN

In this short note we shall give a characterization of groups in terms of two binary operations.

Let G be a set with two binary operations * and o, satisfying the following two axioms:

(1)
$$(a \circ b) * c = b \circ (c * a),$$

(2)
$$a \circ (b * a) = b$$
.

Lemma 1. If $a \circ a = a$ and $b \circ b = b$ in G, then a = b.

Proof.
$$b * a = (b \circ b) * a$$

 $= b \circ (a * b)$ by (1)
 $= a$. by (2)

Hence $a=a \circ a=a \circ (b*a)=b$.

Lemma 2. If $e_a = a * a$, then $a \circ e_a = a$.

Proof.
$$a \circ (a * a) = a$$
. by (1)
Hence $a \circ e_a = a$.

Lemma 3. If
$$e_a = a * a$$
, then $e_a \circ e_a = e_a$

Proof.
$$a = a \circ (a * a)$$
. by (2)
 $a * a = (a \circ (a * a)) * a$
 $= (a * a) \circ (a * a)$. by (1)

This shows that e_a o $e_a = e_a$.

Lemma 4. e_a is independent of a, that is, $e_a = b * b$ for every b in G.

Proof. Let $e_b = b * b$. As in Lemma 3, we can show that $e_b \circ e_b = e_b$. Also we have $e_a \circ e_a = e_a$. Then from Lemma 1, it follows that $e_a = e_b$.

Let us write e for e_a .

Lemma 5.
$$e * b=b$$
 for all $b \in G$.

Proof.
$$e * b = (e \circ e) * b$$

= $e \circ (b * e)$
= b . by (1)

Lemma 6.
$$b \circ e = b$$
 for all $b \in G$.

Proof. $b \circ e = b \circ (b * b)$ by Lemma 4

 $= b$. by (2)

Lemma 7. $b * e = e \circ b$ for all $b \in G$.

Proof. $b * e = (b \circ e) * e$ by Lemma 6

 $= e \circ (e * b)$ by (1)

 $= e \circ b$. by Lemma 5

Lemma 8. $a * (b \circ c) = (a * b) \circ c$ for all $a, b, c \in G$.

Proof. $a * (b \circ c) = (a \circ e) * (b \circ c)$ by Lemma 6

 $= e \circ ((b \circ c) * a)$ by (1)

 $= e \circ (c \circ (a * b))$ by (1)

 $= (c \circ (a * b)) * e$ by Lemma 7

 $= (a * b) \circ (e * c)$ by Lemma 7

 $= (a * b) \circ (e * c)$ by (1)

Theorem. If a binary operation in G is defined by $ab = (e \circ a) * b$ for all $a, b \in G$, then G is a group.

Proof. Let a, b, $c \in G$.

(1) Associativity:

$$(ab)c = (e \circ ((e \circ a) * b)) * c$$
 by Definition
$$= ((b \circ e) * (e \circ a)) * c$$
 by Lemma 6
$$= (b * (e \circ a)) * c$$
 by Lemma 8
$$= ((b * e) \circ a) * c$$
 by Lemma 8
$$= a \circ (c * (b * e))$$
 by Lemma 7
$$= a \circ ((c \circ e) * (e \circ b))$$
 by Lemma 8
$$= a \circ (e \circ ((e \circ b) * c))$$
 by Lemma 8
$$= a \circ ((e \circ b) * c)$$
 by (1)
$$= a \circ (((e \circ b) * c) * e)$$
 by Lemma 7
$$= (e \circ a) * ((e \circ b) * c)$$
 by (1)
$$= a(bc).$$

$$eb = (e \circ e) * b$$
 by Definition
 $= e \circ (b * e)$ by (1)
 $= b$.

(3) Left inverse:

$$(e \circ a)a = (e \circ (e \circ a)) * a$$
 by Definition
 $= ((e \circ a) * e) * a$ by Lemma 7
 $= (a \circ (e * e)) * a$ by (1)
 $= (a \circ e) * a$ by Lemma 5
 $= a * a$ by Lemma 6
by Lemma 6

Hence G is a group.

Note 1. With respect to the operation $ab = (e \circ a) * b$ for all $a, b \in G$, G is a commutative group if a * b = b o a for all $a, b \in G$.

Proof. Suppose
$$a * b = b \circ a$$
.
Then $ab = (e \circ a) * b$ by Definition
$$= b \circ (e \circ a)$$
 by Assumption
$$= b \circ (a * e)$$
 by Lemma 7
$$= (e \circ b) * a$$
 by (1)
$$= ba$$
.

Note 2. Let G be a group. If we define $a * b = a^{-1}b$ and $a \circ b = ab^{-1}$, then G satisfies both (1) and (2).

Received 10.9.81 Dept. of Pure Math. Calcuita University