ON PRECONTINUOUS AND α-PRECONTINUOUS MAPPINGS

ZBIGNIEW DUSZYNSKI

ABSTRACT: Precontinuity and α -precontinuity of mappings in topological spaces are considered. Another properties of these types of mappings and interrelationships with some other types are studied. Some observations concerning Hausdorffness, normality and β -connectedness of spaces are given.

Key words and phrases: Preopen, α -open, semi-open, simply open sets; α -precontinuity, precontinuity, semi-continuity, α -continuity, a.c.S.; submaximal, β -connected, Hausdorff, normal, \mathcal{D} -spaces.

1991 Mathematics Subject Classification. 54C08.

1. INTRODUCTION

Mashhour et al. [28] introduced the notion of precontinuous mapping which coincides with almost continuity in the sense of Husain [16] (briefly: a.c.H.). Quite recently, Beceren and Noiri [4] have defined α -precontinuous mappings which are of stronger form of continuity than those precontinuous. Some interrelationships with other known classes of mappings can be found in [4]. In present paper we continue investigations concerning α -precontinuous and precontinuous mappings in context of several types of 'open' and 'continuous' mappings.

2. PRELIMINARIES

Throughout the paper, by (X, τ) , (Y, σ) , ... we mean topological spaces (briefly: spaces) on which no separation axioms are assumed unless explicitly stated. The Cartesian product topology for spaces (X, τ) and (Y, σ) will be denoted by $\tau \times \sigma$. Let S be a subset of an (X, τ) . The closure of S and the interior of S (both in (X, τ)) are denoted by $\operatorname{cl}_{\tau}(S)$ (or $\operatorname{cl}(S)$) and $\operatorname{int}_{\tau}(S)$ (or int (S)), respectively. A subset $S \subset X$ is said to be **regular open** (resp. **regular closed**) in (X, τ) if $S = \operatorname{int}(\operatorname{cl}(S))$ (resp. $S = \operatorname{cl}(\operatorname{int}(S))$). The family of all closed (resp. regular open, regular closed) subsets of a space (X, τ) will be denoted by $\operatorname{c}(X, \tau)$ (resp. RO (X, τ) , $\operatorname{RC}(X, \tau)$). A subset S of (X, τ) is said to be α -**open** [32] (resp. **semi-open** [21], **preopen** [28], **semi-preopen** [2] or equivalently β -**open** [1]) if $S \subset \operatorname{int}(\operatorname{cl}(\operatorname{int}(S)))$ (resp. $S \subset \operatorname{cl}(\operatorname{int}(S))$, $S \subset \operatorname{cl}(\operatorname{int}(\operatorname{cl}(S)))$). The complement of an α -open (resp. semi-open, preopen, semi-preopen) set is called α -**closed** (resp. **semi-closed**, **preclosed**, **semi-preclosed**). The family of all α -open (resp. semi-open, preopen, semi-preopen) subsets of (X, τ) will be denoted by

 τ^{α} (resp. SO(X, τ), PO(X, τ), SPO (X, τ)). The family of all semi-closed (resp. preclosed, semi-preclosed) subsets of (X, τ) we denote by $SC(X, \tau)$ (resp. PC (X, τ), SPC (X, τ)). The following incusions are known for any space (X, τ): $\tau \subset \tau^{\alpha} = SO(X, \tau) \cap PO(X, \tau)$ ([39, Lemma 3.1] or [45, Lemma 2]), SO (X, τ) \subset SPO (X, τ) and PO (X, τ) \subset SPO (X, τ). For each (X, τ) the family τ^{α} forms a topology on X [32, Proposition 2] which is strictly distinct from τ , in general. We have $(\tau^{\alpha})^{\alpha} = \tau^{\alpha}$ [32, Proposition 10] for each (X, τ). If $A \subset$ SO (X, τ) (resp. $A \subset$ PO (X, τ)), then $\cup A \in$ SO(X, τ) [21, Theorem 2] (resp. $\cup A \in$ PO(X, τ) [28]).

With a standard method, for any space (X, τ) and a subset $S \subset X$ one defines [2] the **preinterior** of S (pint_{τ}(S)), the **semi-preinterior** of S (spint_{τ}(S)), the **preclosure** of S (pcl_{τ}(S)), and the **semi-preclosure** of S (spcl_{τ}(S)) as respectively: the union of all preopen (resp. semi-preopen) subsets of (X, τ) contained in S and the intersection of all preclosed (resp. semi-preclosed) subsets of (X, τ) containing S.

The following formulas are known: $\operatorname{pcl}_{\tau}(S) = S \cup \operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(S))$ [2, Theorem 1.5(e)], $\operatorname{pint}_{\tau}(S) = S \cap \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(S))$ [2, Theorem 1.5(f)]. A mapping $f: (X, \tau) \to (Y, \sigma)$ is said to be α -precontinuous [4] (resp. precontinuous [28], semicontinuous [21], α -continuous [30], α -irresolute [27], almost continuous in the sense of Singal and Singal [48] or briefly a.c.S.) if $f^{-1}(V) \in PO(X, \tau)$ (resp. $f^{-1}(V) \in PO(X, \tau)$, $f^{-1}(V) \in SO(X, \tau)$, $f^{-1}(V) \in \tau^{\alpha}$, $f^{-1}(V) \in \tau^{\alpha}$, $f^{-1}(V) \in \tau^{\alpha}$ for every set $V \in \sigma^{\alpha}$ (resp. $V \in \sigma$, $V \in \sigma$, $V \in \sigma$, $V \in \sigma^{\alpha}$, $V \in RO(X, \tau)$ [48, Theorem 2.2(b)]).

A mapping $f:(X, \tau) \to (Y, \sigma)$ is called *contra-continuous* [7] (resp. *contra-semi-continuous* [8], *contra-precontinuous* [17]) if $f^{-1}(V) \in c(X, \tau)$ (resp. $f^{-1}(V) \in SC(X, \tau)$, $f^{-1}(V) \in PC(X, \tau)$) for every $V \in \sigma$.

3. a-PRECONTINUOUS MAPPINGS

In [4] the authors gave several characterizations of α -precontinuity. In the following theorem we offer another characterizations of this type of continuity.

Theorem 1. For a mapping $f:(X,\tau)\to (Y,\sigma)$ the following statements are eqivalent:

- (1) f is α -precontinuous.
- (2) $\operatorname{pcl}_{\pi}(f^{-1}(B)) \subset f^{-1}(\operatorname{cl}_{\sigma^{\alpha}}(B))$ for every subset $B \subset Y$.
- (3) $f(\operatorname{pcl}_{\tau}(A)) \subset \operatorname{cl}_{\sigma^a}(f(A))$ for every subset $A \subset X$.
- (4) $f^{-1}(\operatorname{int}_{\sigma^{\alpha}}(S)) \in \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(S)))$ for every subset $S \subset Y$.
- (5) $f^{-1}(\operatorname{int}_{\sigma^{\alpha}}(S)) \subset \operatorname{pint}_{\tau}(f^{-1}(S))$ for every subset $S \subset Y$.

Proof. (1) \Rightarrow (2). Let f be α -precontinuous. Then $\operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(f^{-1}(B))) \subset f^{-1}(\operatorname{cl}_{\sigma^{\alpha}}(B))$ for every subset $B \subset Y$ [4, Theorem 3.1(f)]. Our inclusion follows from [2, Theorem 1.5(e)].

- (2) \Rightarrow (1). Obvious by [2, Theorem 1.5(e)] and [4, Theorem 3.1(f)].
- (1) ⇔ (3). This follows immediately from [4, Theorem 3.1(g)] and [2, Theorem 1.5(e)].
- (1) \Leftrightarrow (4). Let S be any subset of Y and let $B = Y \setminus S$. Utilizing [4, Theorem 3.1(f)] we calculate as follows: $\operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(f^{-1}(B))) \subset f^{-1}(\operatorname{cl}_{\sigma^a}(B))$ iff $X \setminus f^{-1}(\operatorname{cl}_{\sigma^a}(B)) \subset \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(X \setminus f^{-1}(B)))$ iff $f^{-1}(\operatorname{int}_{\sigma^a}(S) \in \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(S)))$.
 - (4) \Leftrightarrow (5). Apply [2, Theorem 1.5(f)].

The following result has been obtained by Beceren and Noiri.

Theorem 2. [4, Theorem 3.2]. Let (X, τ) and (Y, σ) be arbitrarily chosen spaces and let the graph mapping $g: (X, \tau) \to (X \times Y, \tau \times \sigma)$ for an $f: (X, \tau) \to (Y, \sigma)$ be given via g(x) = (x, f(x)) for each $x \in X$. If g is α -precontinuous then f is α -precontinuous.

For a.c.S., a.c.H., and w.c. [35] mappings, theorems of the above type are reversible; see respectively [23, Theorems 1&2], [35, Theorem 1]. Also, in the cases of a.α.c. [41], s.w.c. [42], p.a.α.c. [11], and p.s.w.c. [11] mappings, reversibilities of this kind are possible; see [11].

We are to show that under a certain condition imposed on (X, τ) and (Y, σ) , the converse of Theorem 2 holds.

We offer another proof of the following assertion.

Lemma 1. [13, p. 136]. Let (X, τ) be a space, $U \in \tau^{\alpha}$ and $V \in PO(X, \tau)$. Then $U \cap V \in PO(X, \tau)$.

Proof. We have $U \cap V \subset \operatorname{int}(\operatorname{cl}(\operatorname{int}(U))) \cap \operatorname{int}(\operatorname{cl}(V)) \subset \operatorname{int}(\operatorname{cl}(U)) \cap \operatorname{int}(\operatorname{cl}(V))$. From [39, Lemma 3.5] we infer that $U \cap V \in \operatorname{PO}(X, \tau)$.

Definition 2. Let (X, τ) and (Y, σ) be spaces. Then

$$(\tau \times \sigma)^{\alpha} = (\tau^{\alpha} \times \sigma^{\alpha})^{\alpha}$$

Proof. First, we will show the inclusion

(1) $\tau^{\alpha} \times \sigma^{\alpha} \subset (\tau \times \sigma)^{\alpha}$.

Let $S \in \tau^{\alpha} \times \sigma^{\alpha}$. Then $S = \bigcup_{i \in J} S_i^1 \times S_i^2$ where $S_i^1 \in \tau^{\alpha}$ and $S_i^1 \in \sigma^{\alpha}$ for each $i \in J$. So,

$$\begin{split} \mathcal{S} &\subset \bigcup_{i \in \mathcal{I}} \Big(\mathrm{int}_{\tau} \Big(\mathrm{cl}_{\tau} \Big(\mathrm{int}_{\tau} \Big(S_{i}^{1} \Big) \Big) \Big) \times \mathrm{int}_{\sigma} \Big(\mathrm{cl}_{\sigma} \Big(\mathrm{int}_{\sigma} \Big(S_{i}^{2} \Big) \Big) \Big) \Big) \\ &= \bigcup_{i \in \mathcal{I}} \Big(\mathrm{int}_{\tau \times \sigma} \Big(\mathrm{cl}_{\tau \times \sigma} \Big(\mathrm{int}_{\tau \times \sigma} \Big(S_{i}^{1} \times S_{i}^{2} \Big) \Big) \Big) \subset \mathrm{int}_{\tau \times \sigma} \Big(\mathrm{cl}_{\tau \times \sigma} \Big(\mathrm{int}_{\tau \times \sigma} \Big(S_{i}^{1} \times S_{i}^{2} \Big) \Big) \Big) \Big) \end{split}$$

Therefore, $S \in (\tau \times \sigma)^{\alpha}$. The next inclusion to be shown is

(2)
$$(\tau \times \sigma)^{\alpha} \subset (\tau^{\alpha} \times \sigma^{\alpha})^{\alpha}$$
.

Let $W \in (\tau \times \sigma)^{\alpha}$. Then we have

$$W \subset \operatorname{int}_{\tau \times \sigma} \left(\operatorname{cl}_{\tau \times \sigma} \left(\operatorname{int}_{\tau \times \sigma} (W) \right) \right) \subset \operatorname{int}_{\tau^{\alpha} \times \sigma^{\alpha}} \left(\operatorname{cl}_{\tau \times \sigma} \left(\operatorname{int}_{\tau \times \sigma} (W) \right) \right).$$

By [14, Lemma 1(i)] and (1) we get

$$W \subset \operatorname{int}_{\tau^{\alpha} \times \sigma^{\overline{\alpha}}} \bigg(\operatorname{cl}_{(\tau \times \sigma)^{\overline{\alpha}}} \Big(\operatorname{int}_{\tau \times \sigma} (W) \Big) \bigg) \subset \operatorname{int}_{\tau^{\alpha} \times \sigma^{\overline{\alpha}}} \bigg(\operatorname{cl}_{\tau^{\alpha} \times \sigma^{\overline{\alpha}}} \Big(\operatorname{int}_{\tau^{\alpha} \times \sigma^{\overline{\alpha}}} \Big(W) \Big) \bigg).$$

Thus, $W \in (\tau^{\alpha} \times \sigma^{\alpha})^{\alpha}$. We shall show now that

$$(3) \left(\tau^{\alpha} \times \sigma^{\alpha}\right)^{\alpha} \subset (\tau \times \sigma)^{\alpha}.$$

Let $V \in (\tau^{\alpha} \times \sigma^{\alpha})^{\alpha}$. Hence $V \subset \operatorname{int}_{\tau^{\alpha} \times \sigma^{\alpha}} \left(\operatorname{cl}_{\tau^{\alpha} \times \sigma^{\alpha}} \left(\operatorname{int}_{\tau^{\alpha} \times \sigma^{\alpha}} (V) \right) \right)$. By (1) and [14, Lemma 1(i)] we obtain

$$V \subset \operatorname{int}_{(\tau \times \sigma)^a} \bigg(\operatorname{cl}_{(\tau^a \times \sigma^a)^a} \Big(\operatorname{int}_{\tau^a \times \sigma^a} (V) \Big) \bigg).$$

By (2) and (1) we get $V \subset \operatorname{int}_{(\tau \times \sigma)^{\alpha}} \left(\operatorname{cl}_{(\tau \times \sigma)^{\alpha}} \left(\operatorname{int}_{(\tau \times \sigma)^{\alpha}} \left(V \right) \right) \right)$. This shows that

$$V \in \left((\tau \times \sigma)^{\alpha} \right)^{\alpha} = (\tau \times \sigma)^{\alpha};$$

see [32]. Eventually, inclusions (2) and (3) complete the proof.

Corollary 1. Let (X, τ) and (Y, σ) be such spaces that

$$(4) \left(\tau^{\alpha} \times \sigma^{\alpha}\right)^{\alpha} \subset \tau^{\alpha} \times \sigma^{\alpha}$$

Then $(\tau \times \sigma)^{\alpha} = \tau^{\alpha} \times \sigma^{\alpha}$.

Theorem 2. Let (X, τ) , (Y, σ) be spaces and let mappings f and g be as in Theorem 2. If (4) holds and if f is α -precontinuous, then g is α -precontinuous.

Proof. Suppose f is α -precontinuous. Let $x \in X$ and let $W \in (\tau \times \sigma)^{\alpha}$ be any set containing g(x). By (4) and by Corollary 1 there exist sets $U \in \tau^{\alpha}$, $V \in \sigma^{\alpha}$, such that $g(x) = (x, f(x)) \in U \times V \subset W$. Since f is α -precontinuous, there is a set $U_1 \in PO(X, \tau)$ containing x such

that $f(U_1) \subset V$ [4, Theorem 3.1(c)]. Thus, $f(U \cap U_1) \subset V$ where $x \in U \cap U_1 \in PO(X, \tau)$ by Lemma 1. So we obtain $g(U \cap U_1) \subset U \times V \subset W$. This shows that g is α -precontinuous.

For every totally disconnected space (X, τ) (each open set is closed), we have $\tau = \tau^{\alpha}$ [19, Theorem 3.3].

Corollary 2. Let (X, τ) and (Y, σ) be such spaces that the space $(X \times Y, \tau \times \sigma)$ is totally disconnected and let $f: (X, \tau) \to (Y, \sigma)$. Then, the graph mapping g of f is α -precontinuous if and only if f is α -precontinuous.

Theorem 3. Let for $i=1, 2, (X_i, \tau_i)$ be arbitrary spaces and (Y_i, σ_i) be spaces fulfilling the condition $(\sigma_1^{\alpha} \times \sigma_2^{\alpha})^{\alpha} \subset \sigma_1^{\alpha} \times \sigma_2^{\alpha}$. Then, mappings $f_i: (X_i, \tau_i) \to (Y_i, \sigma_i)$, i=1, 2, are α -precontinuopus if and only if the product mapping $f: (X_1 \times X_2, \tau_1 \times \tau_2) \to (Y_1 \times Y_2, \sigma_1 \times \sigma_2)$, defined via $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$ for each $(x_1, x_2) \in X_1 \times X_2$, is α -precontinuous. **Proof.** Sufficiency. [4, Theorem 3.4].

Necessity. Let f_i be α -precontinuous, i=1, 2, and let $W \in (\sigma_1 \times \sigma_2)^{\alpha}$ By Corollary 1 we have $W \in \sigma_1^{\alpha} \times \sigma_2^{\alpha}$, and so $W = \bigcup_{j \in \mathcal{J}} W_1^j \times W_2^j$ where $W_1^j \in \sigma_1^{\alpha}$, $W_2^j \in \sigma_2^{\alpha}$ for each $j \in \mathcal{J}$. Using [4, Theorem 3.1(d)], for any chosen $j \in \mathcal{J}$ we calculate as follows:

$$\begin{split} f^{-1}\big(W_1^j\times W_2^j\big) &= \ f_1^{-1}\big(W_1^j\big)\times f_2^{-1}\big(W_2^j\big) \subset \operatorname{int}_{\tau_1}\Big(\operatorname{cl}_{\tau_1}\big(f_1^{-1}\big(W_1^j\big)\big)\Big) \times \operatorname{int}_{\tau_2}\Big(\operatorname{cl}_{\tau_2}\big(f_2^{-1}\big(W_2^j\big)\big)\Big) \\ &= \ \operatorname{int}_{\tau_1\times\tau_2}\Big(\operatorname{cl}_{\tau_1\times\tau_2}\Big(f^{-1}\big(W_1^j\times W_2^j\big)\Big)\Big) \subset \operatorname{int}_{\tau_1\times\tau_2}\Big(\operatorname{cl}_{\tau_1\times\tau_2}\big(f^{-1}\big(W\big)\big)\Big). \end{split}$$

Therefore, $f^{-1}(W) \subset \operatorname{int}_{\tau_1 \times \tau_2} \left(\operatorname{cl}_{\tau_1 \times \tau_2} \left(f^{-1}(W) \right) \right)$ and consequently f is α -precontinuous.

A subset S of a space (X, τ) is said to be simply open [6], if $S = O \cup N$ where $O \in \tau$ and N is nowhere dense in (X, τ) . A mapping $f: (X, \tau) \to (Y, \sigma)$ is called simply continuous [6] if the preimage $f^{-1}(G)$ is simply open in (X, τ) for each $G \in \sigma$.

Each semi-open subset of a space (X, τ) is simply open in (X, τ) [21, Theorem 7]. Thus, any semi-continuous mapping is simply continuous. The converse is not the truth [6, Example 1.1.2].

Lemma 3. If a mapping $f:(X, \tau) \to (Y, \sigma)$ is α -precontinuous and contra-continuous, then $f^{-1}(S) \in PC(X, \tau)$ for every simply open subset S of (Y, σ) .

Proof. Let $S = O \cup N$ be simply open in (Y, σ) $(O \in \tau \text{ and } N \text{ is nowhere dense})$. Then, $f^1(S) = f^1(O) \cup f^1(N)$ where $U_1 = f^1(O) \in c(X, \tau)$ and $U_2 = f^1(N) \in PC(X, \tau)$ [4, Theorem

3.7]. Applying a dual equality to that of [39, emma 3.5] we obtain $f^1(S) = U_1 \cup U_2 \supset \operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(U_1)) \cup \operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(U_2)) = \operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(U_1)) = \operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(U_1))$. Therefore $f^1(S) \in \operatorname{PC}(X, \tau)$.

Theorem 4. Let $f:(X, \tau) \to (Y, \sigma)$ and $g:(Y, \sigma) \to (Z, \nu)$ be given mappings. If g is simply continuous, f is α -precontinuous and contra-continuous, then g o $f:(X, \tau) \to (Z, \nu)$ is contra-precontinuous.

Proof. It follows from Lemma 3.

Theorem 5. Let a mapping $f:(X, \tau) \to (Y, \sigma)$ be α -precontinuous, continuous, contrasemicontinuous, and let (Y, σ) be a T_1 -space. Then, for each $y \in Y$ and for each $V \in \sigma$ such that $y \in \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(V))$ we have $f^{-1}(V \cup \{y\}) \in \operatorname{RO}(X, \tau)$.

Proof. Let $V \in \sigma$ be arbitrarily chosen. Remark that if $y \in V$, then up to continuity and contrasemicontinuity of f we get $f^{-1}(V) \in RO(X, \tau)$. By α -precontinuity of f [4, Theorem 3.8] for every $y \in \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(V))$ we have $f^{-1}(V \cup \{y\}) \subset \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(V \cup \{y\}))) = \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(V)) \cup \operatorname{cl}_{\tau}(f^{-1}(\{y\}))) \subset \operatorname{cl}_{\tau}(f^{-1}(\{y\})) \cup \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(V)))$ [2, Lemma 1.1.(b)]. Since f is continuous and (Y, σ) is a T_1 -space, $\operatorname{cl}_{\tau}(f^{-1}(\{y\})) = f^{-1}(\{y\})$. From contra-semicontinuity of f we infer that $f^{-1}(\{y\}) \cup \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(V))) \subset f^{-1}(V \cup \{y\})$. Hence clearly, $f^{-1}(V \cup \{y\}) \in RO(X, \tau)$.

Remark 1. Continuity and α -precontinuity are independent of each other [4, Examples 2.1 & 2.2]

Theorem 6. Assume an $f:(X, \tau) \to (Y, \sigma)$ has the following: for each $y \in Y$ and each $V \in \sigma$ with $y \in \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(V))$, the preimage $f^{-1}(V \cup \{y\})$ is in RO (X, τ) . Then, f is α -precontinuous, continuous, and contra-semicontinuous.

Proof. The α -precontinuity of f is clear by [4, Theorem 3.8]. Let $V \in \sigma$ be arbitrary and let $y \in V$. By $f^{-1}(V) \in RO(X, \tau)$ it follows evidently that f is continuous and contra-semicontinuous.

4. PRECONTINUOUS MAPPINGS

It is known that each α -precontinuous mapping is precontinuous and that the converse is not true, in general [4, Remark]. Thus, results concerning precontinuous mappings hold also in the α -precontinuity case. Some of them are not mentioned in [4] the reader is advised to see for instance [29, Theorems 2.3 & 2.4 & 2.5].

We recall that for every two a.c.S. mappings f_1 , f_2 from a space (X, τ) into a Hausdorff space (Y, σ) , the set $\{x \in X : f_1(x) = f_2(x)\}$ is closed in (X, τ) [24, Theorem 4]. This result is obviously true for any two mappings f_1 , f_2 with a stronger type of continuity than a.c.S. (see for instance [40, Diagram p. 249]), in particular for *completely continuous* mappings [3]. On the other hand, the following is evident.

Remark 2. A mapping $f:(X, \tau) \to (Y, \sigma)$ is precontinuous and contra-semicontinuous if and only if it is completely continuous.

Theorem 7. Let (X, τ) be arbitrary, (Y, σ) be Hausdorff, and let mappings $f_1, f_2 : (X, \tau) \to (Y, \sigma)$ be given. If f_1 is α -continuous and f_2 is precontinuous, then $A = \{x \in X : f_1(x) = f_2(x)\}$ $\in PC(X, \tau)$.

Proof. Let x be any point of $X \setminus A$. Hence $f_1(x) \neq f_2(x)$ and since (Y, σ) is Hausdorff, there exist sets V_1 , $V_2 \in \sigma$ such that $f_1(x) \in V_1$, $f_2(x) \in V_2$, and $V_1 \cap V_2 = \emptyset$.

By Lemma 1 we have $x \in U_x = f_1^{-1}(V_1) \cap f_2^{-1}(V_2) \in PO(X, \tau)$. We will show that $U_x \subset X \setminus A$. Suppose not. There exists a point $x' \in U_x$ such that $x' \in A$. Hence $f_1(x') = f_2(x') \in V_2$. This implies that $x' \in f_1^{-1}(V_1) \cap f_1^{-1}(V_2) = \emptyset$, a contradiction. Thus, the set $X \setminus A$ is preopen and consequently $A \in PC(X, \tau)$.

Remark 3. (a) [25, Example 1] and [48, Example 2.1] show that precontinuity and a.c.S. are independent notions [23, p. 413].

(b) [39, Examples 3.9 & 3.10] show that α -continuity and a.c.S. are independent of each other.

An analysis of the proof of Theorem 7 leads to the following slight improvement of [15, Theorem 2.6(1)]. We use the fact that in any (X, τ) , if $U \in \tau^{\alpha}$ and $V \in SO(X, \tau)$, then $U \cap V \in SO(X, \tau)$ [32].

Theorem 8. Let (X, τ) be arbitary, (Y, σ) be Hausdorff, and $f_1, f_2 : (X, \tau) \to (Y, \sigma)$. If f_1 is α -continuous and f_2 is semi-continuous, then the set $A = \{x \in X : f_1(x) = f_2(x)\} \in SC(X, \tau)$.

Remark 4. (a) [21, Example 8] and [38, Example 4.1] show that semi-continuity and a.c.S. are independent of each other.

- (b) [37, Examples 2.3] shows that there exists an α -continuous mapping which is not continuous. Obviously, each continuous map is α -continuous.
- (c) [31, Examples 3.1 & 3.2] show that semi-continuity and precontinuity are independent of each other.

If mappings $f_1, f_2: (X, \tau) \to (Y, \sigma)$ are both α -continuous (hence precontinuous), but the space (Y, σ) is not Hausdorff, then the set A from Theorems 7 and 8 mut not be even semi-preclosed in (X, τ) . It is worth to see also [39, Theorem 4.9].

Example 1. Let $X = \{a, b, c\} = Y, \tau = \{0, X, \{b\}, \{a, b\}\}, \text{ and } \sigma = \{0, Y, \{a\}\}.$ Define

 $f_1, f_2: (X, \tau) \to (Y, \sigma)$ as follows: $f_1(a) = b$, $f_2(a) = c$, $f_1(b) = f_2(b) = f_1(c) = f_2(c) = a$. Then f_1 and f_2 are α -continuous and the set $\{x \in X : f_1(x) = f_2(x)\} = \{b, c\} \notin SPC(X, \tau)$.

Using Theorem 8 and [15, Theorem 2.4] we slightly improve [15, Theorem 2.6(2)].

Corollary 3. Let (X, τ) be arbitrary, (Y, σ) be Hausdorff, and $f_1, f_2 : (X, \tau) \to (Y, \sigma)$. If f_1 is α -continuous, f_2 is semi-continuous, and $f_1 = f_2$ on a dense subset of (X, τ) , then $f_1 = f_2$ on X.

Definition 1. A subset S of a space (X, τ) is said to be p-dense in (X, τ) if $pcl_{\tau}(S) = X$.

It is obvious that every subset p-dense in (X, τ) is dense in (X, τ) , but the converse is not always true.

Example 2. Consider the space R of all reals with Euclidean topology τ_e , S = Q (Q the set of all rationals). By [2, Theorem 1.5(e)] we have $\operatorname{pcl}_{\tau_e}(S) = S$.

The next result follows immediately from Theorem 7.

Corollary 4. Let (X, τ) be arbitrary, (Y, σ) be Hausdorff, and $f_1, f_2 : (X, \tau) \to (Y, \sigma)$. If f_1 is α -continuous, f_2 is precontinuous, and $f_1 = f_2$ on a p-dense subset of (X, τ) , then $f_1 = f_2$ on X.

Theorem 9. Let (X, τ) be arbitrary and $S \in SO(X, \tau)$. Then S is p-dense in (X, τ) if and only if S is dense in (X, τ) .

Proof. Sufficiency. Apply [2, Theorem 1.5(e)] and [34, Lemma 2].

Theorem 10. Let $f:(X, \tau) \to (Y, \sigma)$ be a precontinuous surjection. If a set $S \in SO(X, \tau)$ is dense in (X, τ) , then f(S) is dense in (Y, σ) .

Proof. [20, Proposition 3.1]. The reader is advised to compare the characterization (3) of precontinuous mapings given in [47, Theorem 6].

Theorem 11. Let $f:(X, \tau) \to (Y, \sigma)$ be an α -precontinuous surjection. If a set $S \subset X$ is p-dense in (X, τ) , then f(S) is dense in (Y, σ) .

Proof. This follows from Theorem 1(3).

A pace (X, τ) is called a \mathcal{D} -space [22] if each nonempty set $V \in \tau$ is dense in (X, τ) . By [22, Theorem 1] and [49, Theorem 17], being a \mathcal{D} -space, S-connectedness $(X \text{ connot be expressed as the union of two nonempty disjoint semi-open subsets), and irreducibility are equivalent.$

A space (X, τ) is said to be *submaximal* if for every dense subset S of (X, τ) we have $S \in \tau$.

Theorem 12. Let (X, τ) be a \mathcal{D} -space and (Y, σ) be submaximal. If a surjection $f: (X, \tau) \to (Y, \sigma)$ is precontinuous then f is open.

Proof. [20, Proposition 3.1] or [47, Theorem 6].

Mashour et al. [28, theorem 1] established the following characterization of precontinuous mappings: $f:(X,\tau)\to (Y,\sigma)$ is precontinuous if and only if $f(\operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(U)))\subset \operatorname{cl}_{\sigma}(f(U))$ for every $U\subset X$. By this and by [2, Theorem 1.5(e)] one easily obtains the following.

Lemma 4. Let (X, τ) and (Y, σ) be any spaces. A mapping $f: (X, \tau) \to (Y, \sigma)$ is precontinuous if and only if $f(\operatorname{pcl}_{\tau}(U) \subset \operatorname{cl}_{\sigma}(f(U))$ for every $U \subset X$.

Theorem 13. Let $f:(X_i, \tau_i) \to (Y_i, \sigma_i)$, i = 1, 2, be (X, τ) be precontinuous surjections. If a set $S_1 \times S_2 \subset X_1 \times X_2$ is p-dense in $(X_1 \times X_2, \tau_1 \times \tau_2)$ then the product's image $f(S_1 \times S_2)$ is dense in $(Y_1 \times Y_2, \sigma_1 \times \sigma_2)$.

Proof. Let a set $S_1 \times S_2 \subset X_1 \times X_2$ be p-dense in $X_1 \times X_2$. Utilizing [12, Lemma 5.2] and

Lemma 4 we get
$$Y_1 \times Y_2 = f(\operatorname{pcl}(S_1 \times S_2)) \subset f\left(\operatorname{pcl}_{\tau_1}(S_1) \times \operatorname{pcl}_{\tau_2}(S_2)\right) = f_1\left(\operatorname{pcl}_{\tau_1}(S_1)\right)$$

$$\times \ f_2\Big(\operatorname{pcl}_{\tau_2}\big(S_2\big)\Big) \ \subset \operatorname{cl}_{\sigma_1}\Big(f_1\big(S_1\big)\Big) \ \times \operatorname{cl}_{\sigma_2}\Big(f_2\big(S_2\big)\Big) \ = \ \operatorname{cl}_{\sigma_1\times\sigma_2}\Big(f\big(S_1\times S_2\big)\Big).$$

Theorem 14. Let (X_i, τ_i) be \mathcal{D} -spaces and (Y_i, σ_i) be submaximal, i = 1, 2. If mappings $f: (X_i, \tau_i) \to (Y_i, \sigma_i)$ are precontinuous surjections then the product mapping f is open.

Proof. Without difficulties we infer from [28, Theorem 1] that $f(U_1 \times U_2) \in \sigma_1 \times \sigma_2$ for any $U_1 \in \tau$, $U_2 \in \tau$; a calculation is similar to that in the proof of Theorem 13.

A space (X, τ) is said to be β -connected [44] if X cannot be expressed as the union of two nonempty disjoint semi-preopen subsets of (X, τ) . A space (X, τ) is β -disconnected if it is not β -connected.

Definition 2. A mapping $f:(X, \tau) \to (Y, \sigma)$ is said to be **P-open** if $f(V) \in \sigma$ for each $V \in PO(X, \tau)$.

Recall that Jankovic [20] calls a mapping p-open if it preserves preopen sets. Obviously each P-open mapping is open, but these concepts are strictly distinct.

Example 3. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a, b, c\}, \{a\}, \{b, c\}\}\}$. The identity mapping id: $(X, \tau) \to (X, \tau)$ is open but not \mathcal{P} -open, because id $(\{b\}) = \{b\} \notin \tau$.

Theorem 15. Let (X, τ) be β -connected and (Y, σ) be submaximal. If $f: (X, \tau) \to (Y, \sigma)$ is a precontinuous surjection then it is \mathcal{P} -open.

Proof. We use [18, Theorem 3.1(2)] and Lemma 4.

We complete characterizations of β -connected spaces given in [18, Theorem 3.1] (see also [43]) with the following.

Theorem 16. For any space (X, τ) the following are equivalent:

- (1) (X, τ) is β -connected;
- (2) pint (pcl(V)) = X for each nonempty $V \in PO(X, \tau)$;
- (3) spint (pcl(V)) = X for each nonempty $V \in SPO(X, \tau)$;
- (4) pint $(\operatorname{spcl}(V)) = X$ for each nonempty $V \in \operatorname{PO}(X, \tau)$;
- (5) spint $(\operatorname{spcl}(V)) = X$ for each nonempty $V \in \operatorname{SPO}(X, \tau)$.

Proof. Use respective parts of [18, Theorem 3.1]

Lemma 5. In every topological space (X, τ) and for any $W \subset X$ we have

- (a) $\operatorname{pcl}_{\tau}(\operatorname{pint}_{\tau}(W)) \in \operatorname{SPO}(X, \tau)$,
- (b) $\operatorname{pcl}_{\tau}(\operatorname{spint}_{\tau}(W)) \in \operatorname{SPO}(X, \tau)$,
- (c) $\operatorname{spcl}_{\tau}(\operatorname{pint}_{\tau}(W)) \in \operatorname{SPO}(X, \tau)$.

Proof. (a) By [2, Theorem 1.5(e)] we have what follows.

```
 cl(int(cl(pcl(pint(W))))) = cl(int(cl(pint(W) \cup cl(int(pint(W)))))) 
 = cl(int(cl(pint(W)))) \cup cl(int(pint(W))) 
 \supset pint(W) \cup cl(int(pint(W))) = pcl(pint(W)),
```

because pint $(W) \in PO(X, \tau)$.

(b) By [2, Theorem 1.5(e)] we get

```
cl(int(cl(spint(W))))) = cl(int(cl(spint(W) \cup cl(int(spint(W))))))
= cl(int(cl(spint(W)))) \cup cl(int(spint(W)))
\supset spint(W) \cup cl(int(spint(W))) = pcl(spint(W)).
```

(c) Applying [2, Theorem 2.15] we obtain

Theorem 17. Let (X, τ) be β -disconnected. Then, the space X allows the following partitions [9, p.13]:

- (a) $\{pint(pcl(S)), pcl(pint(X \mid S))\} \subset SPO(X, \tau)$ for a certain nonempty $S \in PO(X, \tau)$,
- (b) {pint(spcl(S)), pcl(spint(X \ S))} \subset SPO(X, τ) for a certain nonempty $S \in$ PO(X, τ),
- (c) $\{\text{spint}(\text{pcl}(S)), \text{spcl}(\text{pint}(X \setminus S))\} \subset \text{SPO}(X, \tau)$ for a certain nonempty $S \in \text{SPO}(X, \tau)$,
- (d) $\{\text{spint}(\text{spcl}(S)), \text{spcl}(\text{spint}(X \setminus S))\} \subset \text{SPO}(X, \tau)$ for a certain nonempty $S \in \text{SPO}(X, \tau)$.

Proof. (a) From β -disconnectedness of (X, τ) and from Theorem 16(2') we infer that there exists a nonempty $S \in PO(X, \tau)$ such that $U_1 = \text{pint}(\text{pcl}(S)) \neq X$. Obviously $U_1 \in SPO(X, \tau)$. We shall show that $U_1 \neq \emptyset$. Suppose not. By [2, Theorem 1.5(f)] We get $\emptyset = \text{pcl}(S) \cap \text{int}(\text{cl}(\text{pcl}(S)))$. Applying [39, Lemma 3.5] Lemma 3.5] we have $\emptyset = \text{int}(\text{cl}(\text{pcl}(S))) \supset S$ and so $S = \emptyset$. A contradiction. Put now $U_2 = X \setminus \text{pint}(\text{pcl}(S)) = \text{pcl}(\text{pint}(X \setminus S))$. Clearly, $X \neq U_2 \neq \emptyset$ and by Lemma 5(a), $U_2 \in SPO(X, \tau)$.

Proofs for (b) - (d) are similar to the above. We use respective parts of Theorem 16, Lemma 5, and [18, Lemma 3.1].

- (b) We shall show only that $U_1 = \operatorname{pint}(\operatorname{spcl}(S)) \neq \emptyset$, where a nonempty $S \in \operatorname{PO}(X, \tau)$ is such that $U_1 \neq X$. Suppose not. By [2, Theorem 1.5(f)] and [39, Lemma 3.5] we obtain $\emptyset = \operatorname{spcl}(S) \cap \operatorname{int}(\operatorname{cl}(\operatorname{spcl}(S))) = \operatorname{int}(\operatorname{cl}(\operatorname{spcl}(S)))$. So, $\emptyset = \operatorname{cl}(\operatorname{int}(\operatorname{cl}(\operatorname{spcl}(S)))) \supset \operatorname{spcl}(S)$ [18, Lemma 3.1(2)], a contradiction.
- (c) We shall show only that $U_1 = \text{spint } (\text{pcl}(S)) \neq \emptyset$, where a nonempty $S \in \text{SPO}(X, \tau)$ is such that $U_1 \neq X$. Suppose not. By [2, Theorem 3.21(a)] we have $\emptyset = \text{spint } (\text{pcl}(S)) \supset \text{spint } (\text{spcl}(S)) \supset S$, a contradiction.
- (d) Let $U_1 = \text{spint (spcl}(S))$, where a nonempty $S \in \text{SPO}(X, \tau)$ is such that $U_1 \neq X$. Suppose $U_1 = \emptyset$. Then $\emptyset = \text{spint(spcl}(S)) \supset S$ [2, Theorem 3.21(a)], a contradiction.

Corollary 5. If an $f:(X, \tau) \to (Y, \sigma)$ is a not P-open precontinuous surjection and (Y, σ) is submaximal, then X allows the partitions (a) – (d) from Theorem 17.

Proof. By Theorem 15.

Definition 3. A mapping $f:(X, \tau) \to (Y, \sigma)$ is said to be pre- α -open if $f(S) \in \sigma^{\alpha}$ for each $S \in \tau^{\alpha}$.

Theorem 18. Let a mapping $f:(X, \tau) \to (Y, \sigma)$ be open and precontinuous. Then it is pre- α -open.

Proof. Let a set $A \in \tau^{\alpha}$ be arbitrarily chosen. By [39, Lemma 4.12(1)] there exists a $U \in \tau$ such that $U \subset A \subset \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(U))$. Since f is open, it follows from [36, Lemma 1.4] that

 $f(\operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(U))) \subset \operatorname{int}_{\sigma}(f(\operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(U))))) = \operatorname{int}_{\sigma}(f(\operatorname{cl}_{\tau}(U))).$ Since f is precontinuous, $\operatorname{int}_{\sigma}(f(\operatorname{cl}_{\tau}(U))) \subset \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(f(U)))$ [47, Theorem 6.(3)]. Finally, we obtain $f(U) \subset f(A) \subset \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(f(U)))$ and hence, by [39, Lemma 4.12(1)], $f(A) \in \sigma^{\alpha}$.

The notions of openness and pre-α-openness are independent of each other.

Example 4. (a) Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}\}$, and $\sigma = \{\emptyset, X, \{a\}, \{b, c\}\}$. Then, the identity mapping id: $(X, \tau) \to (X, \sigma)$ is open, but it is not pre- α -open since id($\{a, b\}$) $\notin \sigma^{\alpha}$.

(b) Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a, b\}\}$, and $\sigma = \{\emptyset, X, \{a\}\}$. Then, the identity mapping id: $(X, \tau) \to (X, \sigma)$ is pre- α -open and not open since id $(\{a, b\}) \notin \sigma$.

A mapping $f:(X, \tau) \to (Y, \sigma)$ is said to be weakly open [46] (resp. preopen [28]) if $f(U) \subset \operatorname{int}_{\sigma}(f(\operatorname{cl}_{\tau}(U)))$ (resp. $f(U) \in \operatorname{PO}(Y, \sigma)$) for every set $U \in \tau$. Each pre- α -open mapping is preopen, but the converse doesn't hold (Example 4(a)).

Theorem 19. If $f:(X, \tau) \to (Y, \sigma)$ is weakly open and precontinuous, then it is preopen. **Proof.** Let $U \in \tau$ be arbitrary. By [47, Theorem 6(3)] we have $f(U) \subset \operatorname{int}_{\sigma}(f(\operatorname{cl}_{\tau}(U))) \subset \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(f(U)))$.

In [47, Theorem 11], it is shown that preopenness and the so-called a.o. W. property [50] are equivalent notions. Recall that weak openness and a.o. W. are independent of each other [36, p. 315].

5. α-IRRESOLUTNESS OF MAPPINGS

A mapping $f:(X, \tau) \to (Y, \sigma)$ is said to be semi-open [5] (resp. almost open in the sense of Singal and Singal [48] or briefly a.o.S.) if $f(U) \in SO(Y, \sigma)$ (resp. $f(U) \in \sigma$) for every set $U \in \tau$ (resp. $U \in RO(X, \tau)$). The concepts of preopenness, semi-openness, and a.o.S. are pairwise independent [36].

Lemma 6. If an $f:(X, \tau) \to (Y, \sigma)$ is preopen and precontinuous, then for each set $S \in \sigma^{\alpha}$ there exists a $U_s \in \sigma$ with

(5)
$$f^{-1}(U_s) \subset f^{-1}(S) \subset \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(U_s))).$$

Proof. Let an $S \in \sigma^{\alpha}$ be arbitrarily chosen. By [39, Lemma 4.12(1)] there exists a set U_s $\in \sigma$ such that $U_s \subset S \subset \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(U_s))$. Since f is precontinuous, using [47, Theorem 11] we obtain

$$f^{-1}(\operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}((U_s))) \subset \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(\operatorname{cl}_{\sigma}(U_s)))) \subset \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(U_s))).$$

This completes the proof.

Lemma 7. If an $f:(X, \tau) \to (Y, \sigma)$ is semi-open and precontinuous, then for each set $S \in \sigma^{\alpha}$ thee exists a $U_s \in \sigma$ that satisfies (5).

Proof. Let an $S \in \sigma^{\alpha}$. By [39, Lemma 4.12(1)] there exists a set $U_s \in \sigma$ such that $U_s \subset S \subset \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(U_s))$. Since f is precontinuous, we have

$$f^{-1}(\operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}((U_s))) \subset \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(\operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(U_s))))).$$

It follows by [39, Lemma 4.14] (or by [2, Theorem 1.5(a)]) that $f^{-1}(\operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}((U_s)))) \subset \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(\operatorname{scl}_{\sigma}(U_s))))$. From [33, Theorem 2] we infer that $f^{-1}(\operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}((U_s)))) \subset \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(U_s)))$. Inclusions $f^{-1}(U_s) \subset f^{-1}(S) \subset \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(U_s)))$ complete the proof.

Lemma 7 slightly improves a respective part of the proof of [39, Theorem 4.16].

Lemma 8. If a bijection $f:(X, \tau) \to (Y, \sigma)$ is a.o.S. and precontinuous, then for each set $S \in \sigma^{\alpha}$ there exists a $U_{\varepsilon} \in \sigma$ that satisfies (5).

Proof. Let an $S \in \sigma^{\alpha}$. There exists a set $U_s \in \sigma$ such that $U_s \subset S \subset \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(U_s))$. We have $f^{-1}(U_s) \subset \operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(U_s))))$ since by hypothesis $f^{-1}(U_s) \in \operatorname{PO}(X, \tau) \subset \operatorname{SPO}(X, \tau)$. Put $F = Y \setminus f(X \setminus \operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(U_s)))))$. Hence $f(X \setminus f^{-1}(U_s)) \supset f(X \setminus \operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(U_s))))) = Y \setminus F$. It implies that $F \supset Y \setminus (f(X) \setminus U_s) = U_s$. The set F is closed in (Y, σ) , because $\operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(U_s)))) \in \operatorname{RC}(X, \tau)$ and f is a.o.S. Thus, $\operatorname{cl}_{\sigma}(U_s) \subset F$. Furthermore, we have $f^{-1}(F) = \operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(U_s))))$. Finally, we obtain $f^{-1}(U_s) \subset f^{-1}(\operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(U_s))) \subset \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(\operatorname{cl}_{\sigma}(U_s)))) \subset \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(U_s)))$. This completes the proof.

Every α -irresolute mapping is semi-continuous but even a continuous mapping must not be α -irresolute [27, Example 1]. Every α -irresolute mapping is precontinuous and the converse is not necessarily true [4, Remark].

Theorem 20. Let a mapping $f:(X, \tau) \to (Y, \sigma)$ be precontinuous, semi-continuous (equiv. α -continuous [39, Theorem 3.2]), and let f be either

- (a) preopen or
- (b) semi-open [39, Theroem 4.16].

Then f is α -irresolute.

Proof. Consider by turns the inclusions (5) from Lemmas 6, 7:

$$f^{-1}(U_s) \subset f^{-1}(S) \subset \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(f^{-1}(U_s))),$$

where $S \in \sigma^{\alpha}$ and $U_s \in \sigma$. Since f is semi-continuous, $\operatorname{cl}_{\tau}(f^{-1}(U_s)) = \operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(f^{-1}(U_s)))$ [34, Lemma 2]. Thus

$$\operatorname{int}_{\operatorname{\tau}}(f^{-1}(U_s) \subset f^{-1}(S) \subset \operatorname{int}_{\operatorname{\tau}}(\operatorname{cl}_{\operatorname{\tau}}(\operatorname{int}_{\operatorname{\tau}}(f^{-1}(U_s)))).$$

By [39, Lemma 4.12(1)], f is α -irresolute.

Remark 5. Obviously, Lemmas 6, 7 and Theorem 20 hold if we replace 'precontinuous' by ' α -precontinuous'. In [4, Examples 2.1 & 2.2] it has been shown that α -precontinuity and semicontinuity are independent notions.

Noiri has established that each a.o.S. and α -continuous mapping is α -irresolute [39, Theorem 4.13]. Since the proof of this result is not clear (on a certain stage), we shall prove it in a different way.

Lemma 9. For a mapping $f:(X, \tau) \to (Y, \sigma)$ the following statements are equivalent:

- (a) f is α-irresolute.
- (b) $f(cl_{\tau^{\alpha}}(A)) \subset Cl_{\sigma^{\alpha}}(f(A))$ for each $A \subset X$.
- (c) $f(\operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))) \subset \operatorname{cl}_{\sigma^a}(f(A))$ for each $A \subset X$.

Proof. (a) \Leftrightarrow (b). Obvious.

(b) \Leftrightarrow (c). Apply [2, Theorem 1.5(c)].

Proof of [39, Theorem 4.13]. We have $f(cl(int(cl(A)))) \subset cl(f(A))$ for each subset $A \subset X$, because f is α -continuous [30, Theorem 1.1(iv)]. Since f is a.o.S., we get

$$cl(f(int(cl(A)))) \subset cl(int(f(cl(int(cl(A)))))) \subset cl(int(cl(f(A)))).$$

Utilizing [30, Theorem 1.1(iv)] once more, one easily obtains that $f(cl(int(cl(A)))) \subset cl(int(cl(f(A)))) \cup f(A)$ for each $A \subset X$. So, by [2, Theorem 1.5(c)] and Lemma 9(c), f is α -irresolute.

6. HAUSDORFFNESS AND NORMALITY OF SPACES

Definition 4. A topological space (X, τ) is said to be **p-Hausdorff** if for each pair of distinct points $x, y \in X$ there exist disjoint sets $U_{x'}$, $U_{y} \in PO(X, \tau)$ with $x \in U_{x}$ and $y \in U_{y'}$.

Each Hausdorff space is p-Hausdorff. The converse is false in general, as the following example shows.

Example 5. Consider a space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$.

The concepts of p-hausdorffiness and the so-called semi-Hausdorffness [26], are independent of each other. It is evident by Example 5 and [26, Example 4.1].

Theorem 21. Let $f:(X, \tau) \to (Y, \sigma)$ be a precontinuous injection. If (Y, σ) is Hausdorff then (X, τ) is p-Hausdorff.

Proof. Omitted.

The results we complete this section with, hold also in some other cases; in particular, for completely continuous mappings (see Remark 2 and [40, Diagram p.249]).

Theorem 22. If $f:(X, \tau) \to (Y, \sigma)$ is an a.c.S. injection and (Y, σ) is Hausdorff, then (X, τ) is Hausdorff.

Proof. Use [48, Theorem 2.2(b)] and [10, Lemma 4].

Lemma 10. A Hausdorff space (X, τ) is normal if and only if for each pair of disjoint sets, $F_1, F_2 \in c(X, \tau)$ there exist disjoint $U_1, U_2 \in RO(X, \tau)$ with $F_1 \subset U_1$ and $F_2 \subset U_2$.

Proof. Similar to that of [10, Lemma 4].

Theorem 23. Let $f:(X, \tau) \to (Y, \sigma)$ be an a.c.S. closed injection. If (Y, σ) is normal then (X, τ) is normal.

Proof. Use [48, Theorem 2.2(b)] and Lemma 10.

Recently, the author has introduced the concept of closed-open mappings [10, Definition 1].

Definition 5. A mapping $f:(X, \tau) \to (Y, \sigma)$ will be called closed- α -open if the image $f(F) \in \sigma^{\alpha}$ for each $F \in c(X, \tau)$.

Each closed-open mapping is closed-α-open. The converse doesn't hold.

Example 6. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}\}$. Define the $f : (X, \tau) \to (X, \tau)$ via f(a) = c, f(b) = a, f(c) = b. Then, f is closed- α -open but not closed-open, because $f(\{b, c\}) \in \tau^{\alpha} \setminus \tau$.

Theorem 24. Let $f:(X,\tau)\to (Y,\sigma)$ be an a.c.S. closed- α -open injection. If (Y,σ) is Hausdorff, then (X,τ) is normal.

Proof. Hausdorffness of (X, τ) is clear by Theorem 22. Let $F_1, F_2 \in c(X, \tau)$ be disjoint. We have $f(F_1) \cap f(F_2) = \emptyset$ and there exist sets $G_i \in \sigma$ such that $G_i \subset f(F_i) \subset \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(G_i))$, i = 1, 2 [39, Lemma 4.12(1)]. Since $G_1 \cap G_2 = \emptyset$, it follows that

$$\operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(G_1)) \cap \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(G_2)) = \emptyset.$$

The sets $U_i = \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(G_i)) \in \operatorname{RO}(Y, \sigma)$, i = 1, 2. Therefore, we obtain for both *i*'s that $F_i \subset f^1(U_i) \in \tau$ [48, Theorem 2.2(b)] and $f^1(U_1) \cap f^1(U_2) = \emptyset$. This shows that (X, τ) is normal.

REFERENCES

- 1. M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1) (1983), 77-90.
- 2. D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.
- 3. S. P. Arya, R. Gupta, On strongly continuous mappings, Kyungpook Math. J., 14 (1974), 131-143.
- 4. Y. Beceren, T. Noiri, On α-precontinuous functions, Far East J. Math. Sci., Special Volume III (2000), 295-303.
- 5. N. Biswas, On some mappings in topological spaces, Bull. Calcutta Math. Soc., 61 (1969), 127-135.
- 6. N. Biswas, On some mappings in topological spaces, Thesis for D. Ph. Arts Degree, Univ. of Calcutta 1970.
- 7. J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Mth. Sci., 19(2) (1996), 303-310.
- 8. J. Dontchev, T. Noiri, contra-semicontinuous functions, Math. Pannonica, 10(2) (1999), 159-168.
- 9. J. Dugundji, Topology, Allyn & Bacon, Inc., Boston 1966.
- Z. Duszyński¹, Some remarks on almost α-continuous functions, Kyungpook Math. J., 44(2) (2004); 249-260.
- 11. Z. Duszyński, Properties of prealmost α-continuous and presemi-weakly continuous functions, Acta Mathematica Hungarica, 105(3) (2004), 231-239.
- 12. S. N. El-Deeb, I. A. Hasanein, A. S. Mashhour, T. Noiri, On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 27(75)(4) (1983), 311-315.
- 13. M. Ganster, Preopen sets and resolvable spaces, Kyungpook Math. J., 27(2) (1987), 135-143.
- 14. G. L. Garg. D. Sivaraj, Semitopological properties, Mat. Vesnik, 36 (1984), 137-142.
- 15. T. R. Hamlett, Semi continuous functions, Math. Chronicle, 4 (1976), 101-107.
- 16. T. Husain, Almost continuous mappings, Prace Mat., 10 (1966), 1-7.
- 17. S. Jafari, T. Noiri, On contra-precontinuous functions, Bul. Malaysian Math. Sci. Soc., 25 (2002), 115-128.
- S. Jafari, T. Noiri, Properties of β-connected spaces, Acta Math. Hungar., 101(3) (2003), 227-236.

^{1.} The reader is requested to use the correct official spelling of author's name, i.e., Duszyński.

- 19. D. S. Janković, On locally irreducible spaces, Ann. Soc. Sci. Bruxelles, 97(2) (1983), 59-72.
- 20. D. S. Janković, A note on mappings of extremally disconnected spaces, Acta Mathematica Hungarica, 46(1-2) (1985), 83-92.
- 21. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- 22. N. Levine, Dense topologies, Amer. Math. Monthly, 75 (1968), 847-852.
- 23. P. E. Long, D. A. Carnahan, Comparing almost continuous functions, Proc. Amer. Math. Soc., 38(2) (1973), 413-418.
- 24. P. E. Long, L. L. Herrington, *Properties of almost-continuous functions*, Bolletino U.M.I., 10(4) (1974). 336-342.
- 25. P. E. Long. E. E. McGehee Jr. Properties of almost continuous funcitons, Proc. Amer. Math. Soc., 24 (1970), 175-180.
- 26. S. N. Maheshwari, R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, 89(3) (1975), 395-402.
- 27. S. N. Maheshwari, S. S. Thakur, On α-irresolute mappings, Tamkang J. Math., 11 (1980), 209-214.
- 28. A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt, 53 (1982), 47-53.
- 29. A. S. Mashhour, I. A. Hasanein, S. N. El-Deeb, A note on semi-continuity and precontinuity, Indian J. Pure Appl. Math., 13(10) (1982), 1119-1123.
- 30. A. S. Mashhour, I. A. Hasanein, S. N. El-Deeb, α-continuous and α-open mappings, Acta Mathematica Hungarica, 41 (1983), 213-218.
- 31. A. Neubrunnová, On certain generalizations of the notion of continuity, Mat Časopis, 23(4) (1973), 374-380.
- 32. O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- 33. T. Noiri, Remarks on semi-open mappings, Bull. Cal. Math. Soc., 65 (1973), 197-201.
- 34. T. Noiri, On semi-continuous mappings, Lincei-Rend. Sc. fis. mat. e nat., 54 (1973), 210-214.
- 35. T. Noiri, On weakly continuous mappings, Proc. Amer. Math. Soc., 46(1) (1974), 120-124.
- 36. T. Noiri, Semi-continuity and weak-continuity, Czechoslovak Mathematical Journal, 31 (106) (1981), 314-321.
- 37. T. Noiri, A function which preserves connected spaces, Čas. pest. mat., 107 (1982), 393-396.
- 38. T. Noiri, Almost-open functions, Indian J. Math., 25(1) (1983), 73-79.

- 39. T. Noiri, On α-continuous functions, Čas. pest. mat., 109 (1984), 118-126.
- 40. T. Noiri, Super-continuity and some strong forms of continuity, Indian J. Pure Appl. Math., 15(3), (1984), 241-250.
- 41. T. Noiri, Almost α-continuous functions, Kyungpook Math. J, 28(1) (1988), 71-77.
- 42. T. Noiri, B. Ahmad, On semi-weakly continuous mappings, Kyungpook Math. J., 25(2) (1985), 123-126.
- 43. T. Noiri, Properties of hyperconnected sets, Acta Math. Hungar., 66 (1995), 147-154.
- 44. V. Popa, T. Noiri, Weakly β-continuous functions, An. Univ. Timişoara Ser. Mat. Inform., 32 (1994), 83-92.
- 45. I. L. Reilly, M. K. Vamanamurthy, Connectedness and strong semi-continuity, Čas. pěst. mat., 109 (1984), 261-265.
- 46. D. A. Rose, Weak openness and almost openness, Internat. J. Math & Math. Sci., 7(1) (1984), 35-40.
- 47. D. A. Rose, Weak continuity and almost continuity, Internat. J. Math. & Math. Sci., 7(2) (1984), 311-318.
- 48. M. K. Singal, Asha Rani Singal, *Almost-continuous mappings*, Yokohama Math. J., 16 (1968), 63-73.
- 49. T. Thompson, Characterizations of irreducible spaces, Kyungpook Math. J., 21 (2) (1981), 191-194.
- 50. A. Wilansky, *Topics in functional analysis*, Lecture Notes in Mathematics, vol. 45, Springer-Verlag 1967.

Casimirus The Great University Department of Mathematics PL. Weyssenhoffa 11 85-072 Bydgoszcz Poland