

WEAKLY CONTRA- β -CONTINUOUS FUNCTIONS AND STRONGLY $S\beta$ -CLOSED SETS

C. W. BAKER

ABSTRACT : A new form of contra- β -continuity, called weak contra- β -continuity, is introduced. We show that this class of function is weaker than most forms of β -continuity and contra-continuity, but that the class still has interesting properties. The notion of a strongly $S\beta$ -closed space is defined and conditions are established under which the weakly contra- β -continuous image of a strongly $S\beta$ -closed space is compact. Various properties of strongly $S\beta$ -closed spaces are investigated. For example, we show that every strongly $S\beta$ -closed is the β -closure of a finite set.

Key words and phrases : contra-continuity, β -continuity, contra- β -continuity, weakly contra- β -continuity, nearly compact spaces, strongly $S\beta$ -closed spaces.

2000 Mathematics Subject Classification: 54C10, 54D10.

1. INTRODUCTION

The notion of a β -continuous function was introduced by Abd El-Monsef, et al. [1] in 1983. Over the intervening years many variations of β -continuity have been developed. For example, Noiri and Popa [16] developed the concept of weak β -continuity in 2000 and Noiri [15] introduced slightly β -continuous functions in 2001. Also much work has been done on the notion of contra-continuity and its variations. Contra-continuity was developed by Dontchev [8] in 1996. Dontchev investigated relationships between contra-continuity and coverings of spaces by closed sets. Specifically he defined the notion of a strongly S -closed space and developed conditions under which contra-continuous images of S -closed and strongly S -closed spaces are compact. Caldas and Jafari [6] introduced contra- β -continuity in 2001 and Jafari and Noiri [10] developed contra-precontinuity in 2002. Recently Baker [3, 4, 5] introduced contra-almost β -continuity, weak contra-continuity and weak contra-precontinuity. The purpose of this note is to introduce a form of contra-continuity, which we call weak contra- β -continuity, and to investigate relationships between weak contra-beta-continuity and covers of spaces by β -closed sets. We show weak contra- β -continuity is weaker than β -continuity, contra- β -continuity and weak contra-precontinuity but stronger than slight β -continuity. The concept of a strongly $S\beta$ -closed space is developed and conditions are established under which weakly contra- β -continuous images of strongly $S\beta$ -closed spaces and nearly compact spaces are compact.

2. PRELIMINARIES

The symbols X and Y represent topological spaces with no separation properties assumed unless explicitly stated. All sets are considered to be subsets of topological spaces. The closure and interior of a set A are signified by $\text{Cl}(A)$ and $\text{Int}(A)$, respectively. A set A is regular open (respectively, β -open [1], α -open [14], semi-open [11], preopen [13]) provided that $A = \text{Int}(\text{Cl}(A))$ (respectively $A \subseteq \text{Cl}(\text{Int}(\text{Cl}(A))), A \subseteq \text{Int}(\text{Cl}(\text{Int}(A))), A \subseteq \text{Cl}(\text{Int}(A)), A \subseteq \text{Int}(\text{Cl}(A))$). A set is regular closed (respectively, β -closed, α -closed, semi-closed, preclosed) if its complement is regular open (respectively, β -open, α -open, semi-open, preopen). The β -closure of a set A , denoted by $\beta\text{Cl}(A)$, is the intersection of all β -closed sets containing A . The preclosure of a set A , denoted by $\text{pCl}(A)$, is defined analogously using preclosed sets.

Definition 1. A function $f : X \rightarrow Y$ is said to be *contra-continuous* [8] if $f^{-1}(V)$ is closed for every open subset V of Y .

Definition 2. A function $f : X \rightarrow Y$ is said to be *β -continuous* [1] if $f^{-1}(V)$ is β -open for every open subset V of Y .

Definition 3. A function $f : X \rightarrow Y$ is said to be *contra- β -continuous* [6] if $f^{-1}(V)$ is β -closed for every open subset V of Y .

Definition 4. A function $f : X \rightarrow Y$ is said to be *weakly contra-continuous* [4] provided that, whenever $A \subseteq V \subseteq Y$, A is closed in Y , and V is open in Y , then $\text{Cl}(f^{-1}(A)) \subseteq f^{-1}(V)$.

Definition 5. A function $f : X \rightarrow Y$ is said to be *weakly contra-precontinuous* [5] provided that, whenever $A \subseteq V \subseteq Y$, A is closed in Y , and V is open in Y , then $\text{pCl}(f^{-1}(A)) \subseteq f^{-1}(V)$.

Definition 6. A function $f : X \rightarrow Y$ is said to be *slightly β -continuous* [17] provided that, for every $x \in X$ and every clopen subset V of Y containing $f(x)$, there exists a β -open subset U of X such that $x \in U$ and $f(U) \subseteq V$.

3. WEAKLY CONTRA- β -CONTINUOUS FUNCTIONS

We define a function $f : X \rightarrow Y$ to be *weakly contra- β -continuous* provided that, if $A \subseteq V \subseteq Y$, with A closed in Y and V open in Y , then $\beta\text{Cl}(f^{-1}(A)) \subseteq f^{-1}(V)$. Since $\beta\text{Cl}(f^{-1}(A)) = f^{-1}(A) \cup \text{Int}(\text{Cl}(\text{Int}(f^{-1}(A))))$, we have the following characterization of weak contra- β -continuity.

Theorem 3.1. A function $f : X \rightarrow Y$ is weakly contra- β -continuous if and only if, whenever A is a closed subset of Y , V is an open subset of Y , and $A \subseteq V$, then $\text{Int}(\text{Cl}(\text{Int}(f^{-1}(A)))) \subseteq f^{-1}(V)$.

Theorem 3.2. If $f : X \rightarrow Y$ is β -continuous, then f is weakly contra- β -continuous.

Proof. Assume $f : X \rightarrow Y$ is β -continuous and let $A \subseteq V \subseteq Y$, with A closed in Y and V open

in Y . Then, since $f^{-1}(A)$ is β -closed, we have $\beta\text{Cl}(f^{-1}(A)) = f^{-1}(A) \subseteq f^{-1}(V)$, which proves that f is weakly contra- β -continuous.

Theorem 3.3. *If $f : X \rightarrow Y$ is contra- β -continuous, then f is weakly contra- β -continuous.*

Proof. Assume $f : X \rightarrow Y$ is contra- β -continuous and let $A \subseteq V \subseteq Y$, with A closed in Y and V open in Y . Then, since f is contra- β -continuous, $f^{-1}(V)$ is β -closed. Therefore $\beta\text{Cl}(f^{-1}(A)) \subseteq \beta\text{Cl}(f^{-1}(V)) = f^{-1}(V)$ and hence f is weakly contra- β -continuous.

Since contra- β -continuity and β -continuity are independent [6], it follows that weak contra- β -continuity does not imply either β -continuity or contra- β -continuity.

The following result is a partial converse of Theorem 3.3.

Definition 7. *A function $f : X \rightarrow Y$ is said to be subcontra- β -continuous provided there exists an open base \mathcal{B} for the topology on Y such that $f^{-1}(V)$ is β -closed for every $V \in \mathcal{B}$.*

Recall that a space is called zero dimensional provided it has a clopen base.

Theorem 3.4. *If $f : X \rightarrow Y$ is weakly contra- β -continuous and Y is zero dimensional, then f is subcontra- β -continuous.*

Proof. Let \mathcal{B} be a clopen base for Y and let $B \in \mathcal{B}$. Since f is weakly contra- β -continuous, we see that $\beta\text{Cl}(f^{-1}(B)) \subseteq f^{-1}(B)$ and hence that $f^{-1}(B)$ is β -closed.

Since $\beta\text{Cl}(A) \subseteq \text{pCl} \subseteq \text{Cl}(A)$ for every set A , weak contra-continuity \Rightarrow weak contra-precontinuity \Rightarrow weak contra- β -continuity. From [5] weak contra-precontinuity does not imply weak contra-continuity and the following example shows that weak contra- β -continuity does not imply weak contra-precontinuity.

Example 3.5. *Assume the space $X = \{a, b, c\}$ has the topologies $\sigma = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\tau = \{X, \emptyset, \{b\}, \{a, b\}, \{b, c\}\}$. Then the identity mapping $f : (X, \sigma) \rightarrow (X, \tau)$ is weakly contra- β -continuous but not weakly contra-precontinuous.*

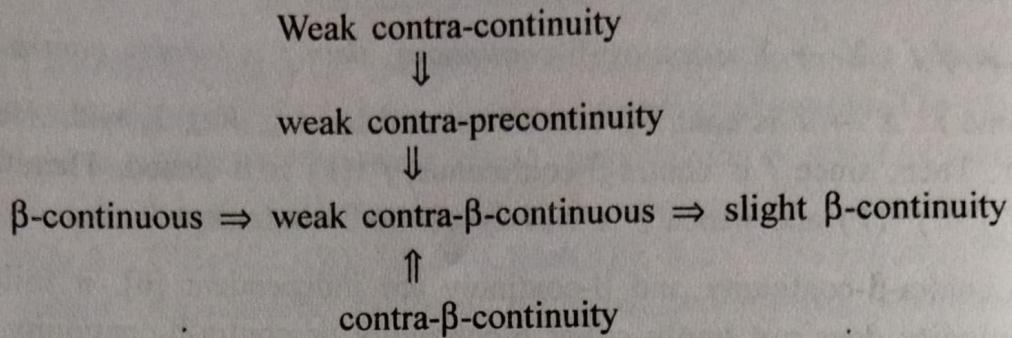
Theorem 3.6. *If $f : X \rightarrow Y$ is weakly contra- β -continuous, then f is slightly β -continuous.*

Proof. Let V be a clopen subset of Y . Then we have $V \subseteq f^{-1}(V) \subseteq Y$ and, since f is weakly contra- β -continuous, $\beta\text{Cl}(f^{-1}(V)) \subseteq f^{-1}(V)$. Therefore $f^{-1}(V)$ is β -closed, which proves that f is slightly β -continuous.

The following example shows that the implication in Theorem 3.6 can not be reversed.

Example 3.7. [5] *Let X denote the real numbers, let $\sigma = \{X, \emptyset, \{0\}\}$, and let τ be the usual topology on X . Since (X, τ) is connected, the identity mapping $f : (X, \sigma) \rightarrow (X, \tau)$ is slightly β -continuous. However, since $\{0\} \subseteq (-1, 1) \subseteq (X, \tau)$ with $\{0\}$ closed and $(-1, 1)$ open, but $\beta\text{Cl}(f^{-1}(\{0\})) \not\subseteq f^{-1}(-1, 1)$, f fails to be weakly contra- β -continuous.*

We have the following implications, none of which are reversible:



We now investigate relationships between weak contra- β -continuity and various forms of β -continuity and a type of generalized β -continuity.

Definition 8. A function $f: X \rightarrow Y$ is said to be *contra-almost β -continuous* [3] provided that $f^{-1}(V)$ is β -closed for every regular open subset V of Y .

Recall that a space is extremely disconnected (briefly an ED space) provided that closures of open sets are open.

Theorem 3.8. If $f: X \rightarrow Y$ is weakly contra- β -continuous and Y is an ED space, then f is contra-almost β -continuous.

Proof. Let V be a regular open subset of Y . Since Y is an ED space, V is also closed. Then, because f is weakly contra- β -continuous, $\beta\text{Cl}(f^{-1}(V)) \subseteq f^{-1}(V)$. Therefore $f^{-1}(V)$ is β -closed, which proves that f is contra-almost β -continuous.

Definition 9. A function $f: X \rightarrow Y$ is said to be *weakly β -continuous* [17] provided that, for every $x \in X$ and every open subset V of Y containing $f(x)$, there exists a β -open subset U of X with $x \in U$ such that $f(U) \subseteq \text{Cl}(V)$.

Since contra-almost β -continuity implies weak β -continuity [3] we have the following corollary.

Corollary 3.9. If $f: X \rightarrow Y$ is weakly contra- β -continuous and Y is an ED space, then f is weakly β -continuous.

Definition 10. A subset A of a space X is said to be *generalized β -closed* (briefly $g\beta$ -closed) (also called *generalized semi-preclosed*) [7] provided that $\beta\text{Cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Definition 11. A function $f: X \rightarrow Y$ is called *generalized β -continuous* (briefly $g\beta$ -continuous) (also called *gsp-continuous*) [7] if $f^{-1}(V)$ is $g\beta$ -closed in X for every closed subset V of Y .

Definition 12. A function $f: X \rightarrow Y$ is said to be *approximately β -continuous* (briefly $a\beta$ -continuous) provided that $\beta\text{Cl}(A) \subseteq f^{-1}(V)$ whenever V is open in Y , A is $g\beta$ -closed in X , and $A \subseteq f^{-1}(V)$.

Theorem 3.10. *If $f : X \rightarrow Y$ is $g\beta$ -continuous and $a\beta$ -continuous, then f is weakly contra- β -continuous.*

Proof. Assume $A \subseteq V \subseteq Y$, where A is closed in Y and V is open in Y . Since f is $g\beta$ -continuous, $f^{-1}(A)$ is $g\beta$ -closed. Thus, because $f^{-1}(A) \subseteq f^{-1}(V)$ and f is $a\beta$ -continuous, $\beta\text{Cl}(f^{-1}(A)) \subseteq f^{-1}(V)$, which proves that f is weakly contra- β -continuous.

Theorem 3.11. *If $f : X \rightarrow Y$ is weakly contra- β -continuous and images of $g\beta$ -closed sets are closed, then f is $a\beta$ -continuous.*

Proof. Let V be an open subset of Y , and let A be a $g\beta$ -closed subset of X such that $A \subseteq f^{-1}(V)$. Then $f(A)$ is closed, and $f(A) \subseteq V$. Since f is weakly contra- β -continuous, $\beta\text{Cl}(f^{-1}(f(A))) \subseteq f^{-1}(V)$. Then we have $\beta\text{Cl}(A) \subseteq \beta\text{Cl}(f^{-1}(f(A))) \subseteq f^{-1}(V)$, which proves that f is $a\beta$ -continuous.

4. STRONGLY $S\beta$ -CLOSED SETS

Thompson [19] defines a spaces to be S-closed provided that every cover of the space by semi-open sets has a finite subfamily, the closures of whose members cover the space. From [9] a space is S-closed if and only if every cover of the space by regular closed sets has finite subcover. Dontchev [8] defines a space to be strongly S-closed provided that every cover of the space by closed sets has a finite subcover. Here we investigate the analogous definitions for β -closed sets.

Definition 13. *A space X is said to be nearly-compact [18] if every open cover of X has a finite subfamily such that the interiors of its closures cover X or equivalently if every cover of X by regular open sets has a finite subcover.*

The following characterization of near-compactness will be useful.

Lemma 4.1. *A set U is α -open if and only if $\beta\text{Cl}(U) = \text{Int}(\text{Cl}(\text{Int}(U)))$.*

Theorem 4.2. *A space X is nearly-compact if and only if every cover of X by α -open sets has a finite subfamily, the β -closures of whose members cover X .*

Proof. Assume X is nearly-compact. Let C be a cover of X by α -open sets. Then for every $U \in C$, $U \subseteq \text{Int}(\text{Cl}(\text{Int}(U)))$. Therefore $\{\text{Int}(\text{Cl}(\text{Int}(U))) : U \in C\}$ is a cover of X by regular open sets and hence has a finite subcover $\{\text{Int}(\text{Cl}(\text{Int}(U_i))) : i = 1, \dots, n\}$. It then follows from Lemma 4.1 that $\{\beta\text{Cl}(U_i) : i = 1, \dots, n\}$ is a cover of X .

Assume that every cover of X by α -open sets has a finite subfamily, the β -closures of whose members cover X . Let C be a cover of X by regular open sets. Then, since C is a cover of X by α -open sets, there exists a finite subfamily $\{U_i : i = 1, \dots, n\}$ such that $\{\beta\text{Cl}(U_i) : i = 1, \dots, n\}$ is a cover of X . However, since regular open sets are β -closed, $\beta\text{Cl}(U_i) = U_i$. Hence $\{U_i : i = 1, \dots, n\}$ is a finite subcover of C , which proves that X is nearly-compact.

Definition 14. A space X is said to be strongly $S\beta$ -closed if every cover of X by β -closed sets has a finite subcover.

Theorem 4.3. If X is strongly $S\beta$ -closed, then X is nearly-compact.

Proof. Let \mathcal{C} be a cover of X by α -open sets. Then for every $U \in \mathcal{C}$, $U \subseteq \text{Int}(\text{Cl}(\text{Int}(U)))$. Therefore $\{\text{Int}(\text{Cl}(\text{Int}(U))) : U \in \mathcal{C}\}$ is a cover of X . It then follows from Lemma 4.1 that $\{\beta\text{Cl}(U) : U \in \mathcal{C}\}$ is a cover for X by β -closed sets. Since X is strongly $S\beta$ -closed, there exists a finite subcover $\{\beta\text{Cl}(U_i) : i = 1, \dots, n\}$ and hence by Theorem 4.2 X is nearly compact.

Remark 4.4. Our original intention was to use the condition given in Theorem 4.2 as a definition of $S\beta$ -closed. However, this condition turned out to be equivalent to the already defined notion of near-compactness.

We have the following implications:

$$\begin{array}{c} \text{strongly } S\beta\text{-closed} \Rightarrow \text{strongly } S\text{-closed} \Rightarrow S\text{-closed} \\ \Downarrow \\ \text{nearly-compact} \end{array}$$

The following examples show that none of the above implications are reversible.

Example 4.5. Let X denote the real numbers with the topology $\tau = \{U \subseteq X : 0 \notin U \text{ or } U = X\}$. Since $\{\{x, 0\} : x \neq 0\}$ is a cover of X by regular closed sets with no finite subcover, X fails to be S -closed. However, since X is compact, X is also nearly-compact.

Example 4.6. Let X denote the real numbers with the indiscrete topology. Obviously X is strongly S -closed. However, since every subset of X is β -closed, X is not strongly $S\beta$ -closed.

Finally, Dontchev [8] established that strongly S -closed is strictly stronger than S -closed.

Next we investigate the relationship between strong $S\beta$ -closure and compactness. Since Dontchev [8] showed that strong S -closure is independent of compactness, it follows that compactness does not imply strong $S\beta$ -closure. The following example shows strong $S\beta$ -closure is, indeed, independent of compactness.

Example 4.7. Let X denote the real numbers with the topology $\tau = \{U \subseteq X : 0 \in U \text{ or } U = \emptyset\}$. Since the β -closed sets coincide with the closed sets, X is strongly $S\beta$ -closed. However, X is not compact, since the open cover $\{\{x, 0\} : x \neq 0\}$ has no finite subcover.

Theorem 4.8. If X is strongly $S\beta$ -closed, there exists a finite set S such that $X = \beta\text{Cl}(S)$.

Proof. The collection $\{\beta\text{Cl}(\{x\}) : x \in X\}$ is a cover of X by β -closed sets. Since X is strongly $S\beta$ -closed, there exists a finite subcover $\{\beta\text{Cl}(\{x_i\}) : i = 1, \dots, n\}$. Then $X = \bigcup_{i=1}^n \beta\text{Cl}\{x_i\} \subseteq \beta\text{Cl}(\{x_1, x_2, \dots, x_n\})$.

If we add the hypothesis that no singleton set of X be open to Theorem 4.8, then the singleton sets are β -closed and we obtain the following result.

Theorem 4.9. *A strongly $S\beta$ -closed space in which the singleton sets are not open is finite.*

The proof of the following theorem is straightforward.

Theorem 4.10. *If $f : X \rightarrow Y$ is contra- β -continuous and X is strongly $S\beta$ -closed, then $f(X)$ is compact.*

Definition 15. *A space X called a C-space provided that, for every open set U of X and every $x \in U$, there exists a closed set A such that $x \in A \subseteq U$.*

Theorem 4.11. *Let $f : X \rightarrow Y$ be weakly contra- β -continuous, and let Y be a C-space. If X is strongly $S\beta$ -closed, then $f(X)$ is compact.*

Proof. Let \mathcal{C} be an open cover of $f(X)$ by open subsets of X . Let $y \in f(X)$ and $V_y \in \mathcal{C}$ such that $y \in V_y$. Since Y is a C-space, there exists a closed set A_y such that $y \in A_y \subseteq V_y$. Because f is weakly contra- β -continuous, $\beta\text{Cl}(f^{-1}(A_y)) \subseteq f^{-1}(V_y)$. Then we see that $\{\beta\text{Cl}(f^{-1}(A_y)) : y \in f(X)\}$ is a cover of X by β -closed sets. Since X is strongly $S\beta$ -closed, there exists a finite subcover

$\left\{ \beta\text{Cl}\left(f^{-1}\left(A_{y_i}\right)\right) : i = 1, 2, \dots, n \right\}$. It follows that $\{V_{y_i} : i = 1, 2, \dots, n\}$ is a finite subcover of \mathcal{C} and hence that $f(X)$ is compact.

Definition 16. *A function $f : X \rightarrow Y$ is said to be contra- α -continuous if, for every open set V of Y , $f^{-1}(V)$ is α -closed.*

Theorem 4.12. *Let $f : X \rightarrow Y$ be weakly contra- β -continuous and contra- α -continuous and assume that Y is a C-space. If X is nearly-compact, then $f(X)$ is compact.*

Proof. Let \mathcal{C} be an open cover of $f(X)$ by open subsets of X and let $y \in f(X)$. Then let $V_y \in \mathcal{C}$ such that $y \in V_y$. Since Y is a C-space, there exists a closed set A_y such that $y \in A_y \subseteq V_y$. Since f is contra- α -continuous, $f^{-1}(A_y)$ is α -open. It follows that the family $\{f^{-1}(A_y) : y \in f(X)\}$ is a cover of X by α -open sets. Since Y is nearly-compact, by Theorem 4.2 there

exists a finite subfamily $\left\{f^{-1}\left(A_{y_i}\right) : i = 1, \dots, n\right\}$ such that $X = \bigcup_{i=1}^n \beta\text{Cl}\left(f^{-1}\left(A_{y_i}\right)\right)$.

Because f is weakly contra- β -continuous, $\beta\text{Cl}\left(f^{-1}\left(A_{y_i}\right)\right) \subseteq f^{-1}\left(V_{y_i}\right)$ for every i . Thus

$\{V_{y_i} : i = 1, \dots, n\}$ is a finite subcover of \mathcal{C} and we see that $f(X)$ is compact.

Remark 4.13. *The combination of weak contra- β -continuity and a C-space for a codomain does not imply contra- β -continuity. Consider the identity mapping on the real numbers with the usual topology.*

REFERENCES

1. M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud, β -open sets and β -continuous mappings, *Bull. Fac. Sci. Assiut Univ. A* **12** (1983), 77-90.
2. C. W. Baker, Subweakly β -continuous functions, *Far East J. Math. Sci.* **8** (2003), 151-160.
3. C. W. Baker, On contra-almost β -continuous functions and weakly β -continuous functions, *Kochi J. Math.* **1** (2006), 1-4.
4. C. W. Baker, Weakly contra-continuous functions, *Internat. J. Pure Appl. Math.*, **40** (2007), 265-271.
5. C. W. Baker, On a weak form of contra-continuity, submitted.
6. M. Caldas, S. Jafari, Some properties of contra- β -continuous functions, *Mem. Fac. Sci. Kochi Univ. (Math.)* **22** (2001), 19-28.
7. J. Dontchev, On generalizing semi-preopen sets, *Mem. Fac. Sci. Kochi Univ. (Math.)* **16** (1995), 35-48.
8. J. Dontchev, Contra-continuous functions and strongly S-closed spaces, *Int. J. Math. Math. Sci.* **19** (1996), 303-310.
9. R. A. Herrmann, RC-convergence, *Proc. Amer. Math. Soc.*, **75** (1979), 311-317.
10. S. Jafari and T. Noiri, On contra-precontinuous functions, *Bull. Malaysian Math. Sc. Soc. (Second Series)* **25** (2002), 115-128.
11. N. L. Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, **70** (1963), 36-41.
12. R. A. Mahmoud and M. E. Abd El-Monsef, β -irresolute and β -topological invariants, *Proc. Math. Pakistan Acad. Sci.* **27** (1990), 285-296.
13. A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, *Proc. Math. Phy. Soc. Egypt* **53** (1982), 47-53.
14. O. Njåstad, On some classes of nearly open sets, *Pacific J. Math.* **15**, (1965), 961-970.
15. T. Noiri, Slightly β -continuous functions, *Int. J. Math. Math. Sci.* **28** (2001), 469-478.
16. T. Noiri and V. Popa, Properties of β -continuous functions, *Res Rep. Yatsushiro Nat. Coll. Tech.* **22** (2000), 79-84.
17. V. Popa and T. Noiri, Weakly β -continuous functions, *An. Univ. Timișoara Ser. Mat.-Inform* **32** (1994), 83-92.
18. M. K. Single and A. Mathur, On nearly-compact spaces, *Boll. Un. Mat. Ital. Serie IV* (4-6) (1969), 702-710.
19. T. Thomson, S-closed spaces, *Proc. Amer. Math. Soc.*, **60** (1976), 335-338.

Department of Mathematics

Indiana University Southeast

New Albany, Indiana 47150, USA

Email: cbaker@ius.edu