STRONGLY θ-β-CONTINUOUS FUNCTIONS

error participat excentitions illustrate

and the training of the training of the training of the training of the first of the contract of the training of

TAKASHI NOIRI AND VALERIU POPA

ABSTRACT: In the paper, we introduce a new class of functions called strongly θ - β continuous functions which is stronger than β -continuous functions and investigate their properties.

AMS Subject Classification: 54C08

i ngiko masa safi yana sasa 🛒 📖 🖰 Key words and phrases: β -open, semi-preopen, semi-pre θ -open, semi-pre θ -closure, β -continuous, strongly θ-β-continuous.

1. INTRODUCTION

A subset A of topological space X is called β -open [1] or semi-preopen [3] if $A \subset Cl(Int(Cl(A)))$. A function $f: X \to Y$ is called β -continuous [1] if the preimage $f^{-1}(V)$ of each open set V of Y is β -open in X. Borsik and Doboš [5] introduced the notion of almost quasicontinuous functions to obtain decompositions of quasi continuity. Borsik [4], Ewert [6], and Popa and Noiri [14] independently showed that β-continuity and almost quasicontinuity are equivalent of each other. Popa and Noiri [15] intoduced and investigated weakly β continuous functions which are called weakly semi-precontinuous functions by Ghosh and Bhattacharyya [7]. Noiri and Popa [12] introduced and investigated almost β -continuity. The purpose of the present paper is to introduce and investigate a stronger form of β -continuity called strongly θ - β -continuous functions. 解数通数器 Subtraction in the profile control of the position of the control of the c

2. PRELIMINARIES

Throughout the present paper, X and Y denote topological spaces. Let S be a subset of X. We denote the interior and the closure of a set S by Int (S) and Cl(S), respectively. A subset S is said to be β -open [1] or semi-preopen [3] (resp. α -open[9]) if $S \subset Cl(Int(Cl(S)))$ (resp. $S \subset Int (Cl(Int(S)))$). The complement of a β -open (resp. semi-preopen) set is called β -closed (resp semi-preclosed). The intersection of all semi-preclosed sets containing S is called the semi-preclosure [3] of S and is denoted by spCl(S). The semi-preinterior of S is defined by the union of all semi-preopen sets contained in S and is denoted by spInt(S). The family of all semi-preopen sets of X is denoted by SPO(X). We set SPO(X,x) = $\{U: x \in U \text{ and } V \in U\}$ $U \in SPO(X)$. A point x of X is called a θ -cluster point of S if $Cl(U) \cap S \neq \phi$ for every open set U of X containing x. The set of all θ -cluster points of S is called the θ -closure of S and is denoted by $Cl_{\theta}(S)$. A subset S is said to be semi-pre- θ -closed [16] if $S = Cl_{\theta}(S)$.

The complement of a θ -closed set is said to be θ -open. A point x of X is called a semi-preopen set U of X constants. The complement of a θ -closed set is said to be very semi-preopen set U of X containing pre θ -cluster point of S if $spCl(U) \cap S \neq for$ every semi-preopen set U of X containing pre θ -cluster point of S is called the semi-pre θ -closure (brief). pre θ -cluster point of S if $spCl(U) \cap S \neq 101$ containing θ -cluster points of S is called the semi-pre θ -closure (briefly S). The set of all semi-pre θ -cluster points of S is said to be semi-pre- θ -closed Ω . x. The set of all semi-pre θ -cluster points of S is said to be semi-pre- θ -closed (briefly θ -closure of S) and is denoted by $spCl_{\theta}(S)$. A subset S is said to be semi-pre- θ -closed set is said to be θ -closure of S and is denoted by $spCl_{\theta}(S)$. θ -closure of S) and is denoted by $spCl_{\theta}(S)$. A subset θ semi-pre- θ -closed set is said to be θ semi-sp- θ -closed) if $S = spCl_{\theta}(S)$. The complement of a semi-pre- θ -closed set is said to be θ semi-sp- θ -closed. pre-0-open (briefly sp-0-open). Definition 2.1. A function $f: X \to Y$ is said to be

- (1) β -continuous [1] or almost quasicontinuous [5] if $f^{-1}(V) \in SPO(X)$ for each open set V or Y,
- (2) Weakly β -continuous [15] (resp. almost β -continuous [12] if for each $x \in X$ and (2) Weakly p-continuous [13] (163). there exists $U \in SPO(X,x)$ such that $f(U) \subset C|_{(V)}$ each open set V of Y containing f(x), there exists $U \in SPO(X,x)$ such that $f(U) \subset C|_{(V)}$ (resp. $f(U) \subset Int (Cl(V))$).

Definition 2.2. A function $f: X \to Y$ is said to be strongly θ - β -continuous (briefly **Definition** A in A function A is A and each open set V of Y containing f(x), there exists $U \in SPO(X_x)$ st. B, B, C.) if for each $X \in X$ and each open set V of Y containing f(x), there exists $U \in SPO(X_x)$ such that $f(\operatorname{spCl}(U)) \subset V$.

Definition 2.3. A function $f: X \to Y$ is said to be strongly- θ -continuous [10] if for each $x \in X$ and each open set V of Y containing f(x), there exists an open neighbourhood U of x such that $f(Cl(U)) \subset V$.

Remarks 2.5. (1) Strong θ - β continuity is stronger than β -continuity and is weaker than strong θ -continuity.

(2) Strong θ-β-continuity and continuity are independent of each other as the following simple examples show.

Example 2.6. Let $X = \{a,b,c\}$, $\tau = \{\Phi, X, \{a,b\}\}$ and $\sigma = \{\Phi, X, \{c\}\}$. Define a function $f: (X, \tau) \to (X, \sigma)$ as follows: f(a) = a, f(b) = f(c) = c. Then f is $st.\theta.\beta.c$. but it is ncontinuous.

Example 2.7. Let $X = \{a,b,c\}$ and $\tau = \{\Phi,X\{a\}, \{a,b\}\}\$, Then, the identity function $f:(X, \tau) \to (X,\tau)$ is continuous but not $st.\theta.\beta.c.$ at a.

3. CHARACTERIZATIONS

Theorem 3.1. For a function $f: X \to Y$, The following properties are equivalent

- (1) f is strongly θ - β -continuous;
- (2) $f^{-1}(V)$ is sp- θ -open in X for every open set V of Y;
- (3) $f^{-1}(F)$ is sp- θ -closed in X for every closed set F of Y;

- (4) $f(\operatorname{spCl}_{\theta}(A)) \subset \operatorname{Cl}(f(A))$ for every subset A of X;
- (5) $\operatorname{spCl}_{\theta}(f^{-1}(B)) \subset f^{-1}\operatorname{Cl}(f(B))$ for every subset B of Y.

Proof. (1) \Rightarrow (2): Let V be any open set of Y. Suppose that $x \in f^{-1}(V)$. There exists $U \in SPO(X,x)$ such that $f(spCl(U)) \subset V$. Therefore, we have $x \in U \subset spCl(U) \subset f^{-1}(V)$. This shows that $f^{-1}(V)$ is $sp-\theta$ -open in X.

- (2) \Rightarrow (3) : This is obvious.
- (3) \Rightarrow (4): Let A be any subset of X. Since Cl(f(A)) is closed in Y, by (3) $f^{-1}(Cl(f(A)))$ is sp- θ -closed and we have

$$\operatorname{spCl}_{\theta}(A) \subset \operatorname{spCl}_{\theta}(f^{-1}(f(A))) \subset \operatorname{spCl}_{\theta}(f^{-1}(\operatorname{Cl}(f(A)))) = f^{-1}(\operatorname{Cl}(f(A))).$$
Therefore, we obtain $f(\operatorname{spCl}_{\theta}(A)) \subset \operatorname{Cl}((f(A))).$

- (4) \Rightarrow (5) : Let B be any subset of Y. By (4), we obtain $f(\operatorname{spCl}_{\theta}(f_{-1}^{-1}(B))))$ $\subset Cl(f(f_{-1}^{-1}(B))) \subset Cl(B)$ and hence $\operatorname{spCl}_{\theta}(f_{-1}^{-1}(f(B))) \subset f_{-1}^{-1}(Cl(B))$.
- (5) \Rightarrow (1): Let $x \in X$ and V be any open neighborhood of f(x). Since Y V is closed in Y, we have $\operatorname{spCl}_{\theta}(f^{-1}(Y V)) \subset f^{-1}(\operatorname{Cl}(Y V)) = f^{-1}(Y V)$. Therefore, $f^{-1}(Y V)$ is an $\operatorname{sp-}\theta$ -closed in X and $f^{-1}(V)$ is an $\operatorname{sp-}\theta$ -open set containing x. There exists $U \in \operatorname{SPO}(X,x)$ such that $\operatorname{SpCl}(U) \subset f^{-1}(V)$; hence $f(\operatorname{spCl}(U)) \subset V$. This shows that f is $\operatorname{st} \theta \cdot \beta \cdot c$.

Definition 3.2. A function $f: X \to Y$ is said to be faintly β -continuous [11] if for each point $x \in X$ and each θ -open set V containin f(x), there exists $U \in SPO^{(1)}(X,x)$ such that $f(U) \subset V$.

Theorem 3.3. Let Y be a regular space. Then, for a function $f: X \to Y$ the following properties are equivalent:

- (1) f is faintly β -continuous;
- (2) f is weakly β -continuous;
- (3) f is almost β -continuous;
- (4) f is β -continuous;
- (5) f is $st.\theta.\beta.c.$

Proof. It is shown in [11] that (1), (2) and (4) are equivalent. Since it is obvious that (5) implies (4), we shall show that (4) implies (5).

(4) \Rightarrow (5): Let $x \in X$ and V be an open set Y containing f(x). Since Y is regular, (4) \Rightarrow (5): Let $x \in X$ and V be an open set $W \subset Cl(W) \subset V$. Since f is β -continuous, there exists an open set W such that $f(x) \in W \subset Cl(W) \subset V$. Since f is β -continuous, there there exists an open set W such that $f(x) \in W$. We shall show that $f(\operatorname{spCl}(U)) \subset \operatorname{Cl}(W)$. Suppose exists $U \in \operatorname{SPO}(X,x)$ such that $f(U) \subset W$. We shall show that $G \cap W = G$ exists $U \in SPO(X,x)$ such that $J(U) \subseteq W$. We should be such that $G \cap W = \Phi$. Since that $y \notin Cl(W)$. There exists an open neighborhood G of Y such that $G \cap W = \Phi$. Since f is β -continuous, $f^{-1}(G) \in SPO(X)$ and $f^{-1}(G) \cap U = \Phi$ and hence $f^{-1}(G) \cap SpCl(U)$ J is p-continuous, $f(U) \in SFO(A)$ and $f(SpCl(U)) = \Phi$ and f(SpCl(U)). Consequently, we have $f(\operatorname{spCl}(U) \subset \operatorname{Cl}(W) \subset V$. This shows that f is $\operatorname{st}.\theta.\beta.c.$

Definition 3.4. A space X is said to be semipre-regular (resp. β -regular [2] or sp-regular [13] if for each semi-preclosed (resp. closed) set F and each point $x \in X - F$, there exist disjoint semi-preopen sets U and V such that $x \in U$ and $F \subset V$.

Theorem 3.5. A continuous function $f: X \to Y$ is st. $\theta.\beta.c.$ if and only if X is β -regular.

Proof. Necessity. Let $f: X \to Y$ be the identity function. Then f is continuous and st. θ . β . c. by our hypothesis. For any open set U of X and any point x of U, we have f(x) $= x \in U$ and there exists $G \in SPO(X,x)$ such that $f(spCl(G) \subset U)$. Therefore, we have $x \in G \subset \operatorname{SpCl}(G) \subset U$. It follows from Theorem 2.1 of [2] that X is β -regular.

Sufficiency, Suppose that $f: X \to Y$ is continuous and X is β -regular. For any $x \in$ X and any open neighborhood V of f(x), $f^{-1}(V)$ is an open set of X containing x. Since X is β -regular, there exists $U \in SPO(X)$ such that $x \in U \subset SpCl(U) \subset f^{-1}(V)$ by Theorem 2.1 of [2]. Therefore, we have $f(\operatorname{spCl}(U)) \subset V$. This shows that f is $\operatorname{st.} \theta.\beta.c$.

Theorem 3.6. Let X be a semipre-regular space. Then $f: X \to Y$ is st. $\theta.\beta.c.$ if and only if f is β -continuous.

Proof. Suppose that f is β -continuous. Let $x \in X$ and V be any open set of Y containing f(x). By the β -continuity of f, we have $f^{-1}(V) \in SPO(X,x)$ and hence there exists $U \in SPO(X,x)$ SPO (X,x) such that $spCl(U) \in f^{-1}(V)$. Therefore, we obtain $f(spCl(U)) \subset V$. This shows that f is $st. \theta. \beta. c$. The converse is obvious.

4. SOME PROPERTIES

Theorem 4.1. Let $f: X \to Y$ be a function and $g: X \to X \times Y$ the graph function of f. Then, the following properties hold:

- (1) If g is st. θ . β .c., then f is st. θ . β .c. and X is β -regular.
- (2) If f is st. θ . β .c. and X is semipre-regular, then g is st. θ . β .c.

Proof. (1) Suppose that g is $st.\theta.\beta.c$. First, we show that f is $st.\theta.\beta.c$. Let $x \in X$ and V be an open neighborhood of f(x). Then $X \times V$ is an open set of $X \times Y$ containing g(x). Since g is st. θ . β .c., there exists $U \in SPO(X,x)$ such that $g(spCl(U)) \subset X \times V$. Therefore, we obtain $f(\operatorname{spCl}(U)) \subset V$. Next, we show that X is β -regular. Let U be any open set of X and $x \in U$. Since $g(x) \in U \times Y$ and $U \times Y$ is open is $X \times Y$, there exists $G \in \operatorname{SPO}(X,x)$ such that $g(\operatorname{spCl}(G) U \times Y)$. Therefore, we obtain $x \in G \operatorname{spCl}(G) \subset U$ and hence X is β -regular by Theorem 2.1 of [2].

(2) Let $x \in X$ and W be any open set of $X \times Y$ containing g(x). There exist open sets $U_1 \subset X$ and $V \subset Y$ such that $g(x) = (x, f(x)) \in U_1 \times V \subset W$. Since f is $st. \theta. \beta. c.$, there exists $U_2 \in SPO(X,x)$ such that $f(spCl(U_2) \subset V)$. Since f is semipre-regular and $f(spCl(U_2) \subset V)$. Since f is semipre-regular and $f(spCl(U_2) \subset V)$. Therefore, we obtain $g(spCl(U)) \subset f(spCl(U_2)) \subset f(spCl(U_2)) \subset f(spCl(U_2)) \subset f(spCl(U_2))$. This shows that $f(spCl(U_2)) \subset f(spCl(U_2)) \subset f(spCl(U_2))$.

Corollary 4.2. Let X be a semipre-regular space. Then, a function $f: X \to Y$ is st. $\theta.\beta.c.$ if and only if the graph function $g: X \to X \times Y$ is st. $\theta.\beta.c.$

Lemma 4.3. (Abd El-Monsef et. al. [1] Let A and X_0 be subsets of a space X.

- (1) If $A \in SPO(X)$ and Y is α -open in X, then $A \cap Y \in SPO(Y)$.
- (2) If $A \in SPO(Y)$ and $Y \in SPO(X)$, then $A \in SPO(X)$.

Lemma 4.4. Let X be a topological space and A, Y subsets of X such that $A \subset Y \subset X$ and Y is α -open in X. Then the following properties hold:

- (1) $A \in SPO(X)$ if and only $A \in SPO(X)$,
- (2) $\operatorname{spCl}(A) \cap Y = \operatorname{spCl}_Y(A)$, where $\operatorname{spCl}_Y(A)$ denotes the semipre-closure of A in the subspace Y.

Proof. (1) Let $A \in SPO(Y)$. Since every α -open set is β -open, by Lemma 4.3, we have $A \in SPO(X)$. Conversely, let $A \in SPO(X)$. By Lemma 4.3, $A = A \cap Y \in SPO(Y)$.

(2) Let $x \in \operatorname{spCl}(A) \cap Y$ and $V \in \operatorname{SPO}(Y,x)$. Then, by (1) $V \in \operatorname{SPO}(X,x)$ and hence $V \cap A \neq \emptyset$. Therefore, $x \in \operatorname{spCl}_Y(A)$. Conversely, let $x \in \operatorname{spCl}_Y(A)$ and $V \in \operatorname{SPO}(X,x)$. Then by Lemma 4.3 $x \in V \cap Y \in \operatorname{SPO}(Y)$ and hence $\emptyset \neq A \cap (V \cap Y) \subset A \cap V$. Therefore, we obtain $x \in \operatorname{spCl}(A) \cap Y$.

Theorem 4.5. If $f: X \to Y$ is $st.\theta.\beta.c.$ and X_0 is an α -open subset of X_n then the restriction $f/X_0: X_0 \to Y$ is $st.\theta.\beta.c.$

Proof. For any $x \in X_0$ and any open neighbourhood V of f(x), there exists $U \in SPO(X,x)$ such that $f(spCl(U)) \subset V$ since f is $st. \theta. \beta. c$. Put $U_0 = U \cap X_0$, then by Lemmas 4.3 and 4.4, $U_0 \in SPO(X_0,x)$ and $spCl_{X_0}(U_0) \subset spCl(U_0)$. Therefore, we obtain

 $(f/X_0)(\operatorname{sp} \operatorname{Cl}_{X_0}(U_0))) = f(\operatorname{sp} \operatorname{Cl}_{X_0}(U_0)) \subset f(\operatorname{spCl}(U_0)) \subset f(\operatorname{pCl}(U)) \subset V.$

This shows that f/X_0 is $st.\theta.\beta.c$.

Definition 4.6. A function $f: X \to Y$ is said to be

- (1) β -irresolute [8] if $f^{-1}(V) \in SPO(X)$ for each $V \in SPO(Y)$,
- (2) pre- β -open [8] if $f(U) \in SPO(Y)$ for each $U \in SPO(X)$.

Lemma 4.7. If $f: X \to Y$ is β -irresolute and V is an sp- θ -open in Y, then $f^{-1}(V)$ is sp- θ -open in X.

Proof. Let V be an sp- θ -open set of Y and $x \in f^{-1}(V)$. There exists $W \in SPO(Y)$ such that $f(x) \in W \subset spCl(W) \subset V$. Since f is β -irresolute, we have $f^{-1}(W) \in SPO(X)$ and $f^{-1}(spCl(W)) \in SPC(X)$. Therefore, we obtain $x \in f^{-1}(W) \subset spCl(f^{-1}(W)) \subset f^{-1}(spCl(W)) \subset f^{-1}(V)$. This shows that $f^{-1}(V)$ is sp- θ -open in X.

Theorem 4.8. Let $f: X \to Y$ and $g: Y \to Z$ be functions. Then, the following properties hold:

- (1) If f is st. θ . β .c. and g is continuous, then the composition $g \circ f: X \to Y$ is st. θ . β .c.
- (2) If f is β -irresolute and g is st. θ . β .c., then $g \circ f$ is st. θ . β .c.
- (3) If $f: X \to Y$ is a pre- β -open bijection and $g \circ f: X \to Z$ is st. $\theta.\beta.c.$, then g is st. $\theta.\beta.c.$

Proof. (1) This is obvious from Theorem 3.1.

- (2) This follows immediately from Theorem 3.1 and Lemma 4.7.
- (3) Let W be any open set of Z. Since $g \circ f$ is $st.\theta.\beta.c.$, $(g \circ f)^{-1}(W)$ is $sp-\theta$ -open in X. Since f is pre- β -open and bijective, f^{-1} is β -irresolute and by Lemma 4.7 we have $g^{-1}(W) = f((g \circ f)^{-1}(W))$ is $sp-\theta$ -open in Y. Hence, by Theorem 3.1 g is $st.\theta.\beta.c.$

Let $\{X_{\alpha}: \alpha \in A\}$ be a family of topological spaces, A_{α} a nonempty subset of X_{α} for each $\alpha \in A$ And $X = \Pi\{X_{\alpha}: \alpha \in A\}$ denote the product space, where A is nonempty.

Lemma 4.9. (Abd El-Monsef [2] Let n be a positive integer and

$$A = \prod_{j=1}^{n} A_{\alpha j} \times \coprod_{\alpha \neq \alpha j} X_{\alpha}$$
 Then the following properties hold:

- (1) $A \in SPO(X)$ if and only if $A_{\alpha_j} \in SPO(X_{\alpha_j})$ for each j = 1, 2, ..., n.
- (2) $spCl(\prod_{\alpha \in A} A_{\alpha}) \subset \prod_{\alpha \in A} spCl(A_{\alpha}).$

Theorem 4.10. If a function $f_{\alpha}: X_{\alpha} \to Y_{\alpha}$ is st. θ . β . c. for each $\alpha \in A$. Then the product function $f: \prod X_{\alpha} \to \prod Y_{\alpha}$, defined by $f(\{x_{\alpha}\}) = \{f_{\alpha}(x_{\alpha})\}$ for each $x = \{x_{\alpha}\}$, is st. θ . β . c.

Proof. Let $x = \{x_{\alpha}\} \in \prod X_{\alpha}$ and W be any open set of $\prod Y_{\alpha}$ containing f(x). Then there exists an open set V_{α_j} of Y_{α_j} such that

$$f(x) = \{f_{\alpha}(x_{\alpha})\} \in \prod_{i=1}^{n} V_{\alpha i} \times \prod_{\alpha \neq \alpha i} Y_{\alpha} \subset W.$$

Since f_{α} is $st. \theta. \beta. c$. for each α , there exists $U_{\alpha j} \in SPO(X_{\alpha j}, X_{\alpha j})$ such that $f_{\alpha j}(spCl(U_{\alpha j})) \subset V_{\alpha j}$ for j=1, 2, ..., n. Now, put $U=\prod_{j=1}^n U_{\alpha j} \times \prod_{\alpha \neq \alpha j} X_{\alpha}$. Then, it follows from Lemma 4.9 that $U \in SPO(\Pi X_{\alpha}, x)$. Moreover, we have

$$f(\operatorname{spCl}(U)) \subset f(\prod_{j=1}^n \operatorname{spCl}(U_{\alpha j}) \times \prod_{\alpha \neq \alpha j} X_{\alpha}) \subset \prod_{j=1}^n f_{\alpha j}(\operatorname{spCl}(U_{\alpha j})) \times \prod_{\alpha \neq \alpha j} Y_{\alpha} \subset \prod_{j=1}^n V_{\alpha j} \times \prod_{\alpha \neq \alpha j} Y_{\alpha} \subset W$$

This shows that f is $st. \theta. \beta. c$.

5. St. θ.β.c. FUNCTIONS AND SEPARATIONS AXIOMS

A space X is said to be $sp-T_2$ or $\beta-T_2$ [8] if for each pair of distinct points x and y in X, there exist $U \in SPO(X,x)$ and $V \in SPO(X,y)$ such that $U \cap V = \Phi$.

Theorem 5.1. If $f: X \to Y$ is a st. θ . β .c. injection and Y is T_0 , then X is sp- T_2 .

Proof. Suppose that Y is T_0 . Let x and y be any distinct points of X. Since f is injective, $f(x) \neq f(y)$ and there exists either an open neighbourhood V of f(x) not containing f(y) or an open neighbourhood W of f(y) not containing f(x). If the first case holds, then there exists $U \in SPO(X,x)$ such that $f(spCl(U)) \subset V$. Therefore, we obtain $f(y) \notin f(spCl(U))$ and hence X—spCl(U) $\in SPO(X,y)$. If the second case holds, then we obtain the similar result. Therefore, X is $sp-T_2$.

Theorem 5.2. If $f: X \to Y$ is a st. θ . β .c. function and Y is Hausdorff, then a subset $E = \{(x,y) : f(x) = f(y) \text{ is } sp\text{-}\theta\text{-}closed \text{ in } X \times X.$

Proof. Suppose that $(x,y) \notin E$. It follows that $f(x) \neq f(y)$. Since Y is Hausdorff, there exist disjoint open sets V and W in Y containing f(x) and f(y), respectively. Since f is $st.\theta.\beta.c.$, there exist $U \in SPO(X,x)$ and $G \in SPO(X,y)$ such that $f(spCl(U)) \subset V$ and $f(spCl(G)) \subset W$. Set $D = U \times G$. It follows that $(x,y) \in D \in SPO(X \times X)$ and $spCl(D) \cap E \subset [spCl(U) \times spCl(G)] \cap E = \Phi$. Therefore, E is $sp-\theta$ -closed in $X \times X$.

For a function $f: X \to Y$ the subset $\{(x,f(x)): x \in X\}$ of $X \times Y$ is called the graph

of f and is denoted by G(f).

Definition 5.3. The graph G(f) of a function $f: X \to Y$ is said to be strongly sp-closed if for each $(x,y) \in (X \times Y) - G(f)$, there exist $U \in SPO(X,x)$ and an open set V in Y containing y such that $(SpCl(U)) \times V) \cap G(f) = \Phi$.

Lemma 5.4. The graph G(f) of a function $f: X \to Y$ is strongly sp-closed in $X \times Y$ if and only if for each point $(x,y) \in (X \times Y) - G(f)$, there exist $U \in SPO(X,x)$ and an open set V in Y containing y such that $f(spCl(U)) \cap V = \Phi$.

Theorem 5.5. If $f: X \to Y$ is st. $\theta.\beta.c.$ and Y is Hausdorff, then G(f) is strongly sp-closed in $X \times Y$.

Proof. Let $(x,y) \in (X \times Y) - G(f)$. It follows that $f(x) \neq y$. Since Y is Hausdorff, there exist disjoint open sets V and W in Y containing f(x) and y, respectively. Since f is st. θ . β .c., there exists $U \in SPO(X,x)$ such that $f(spCl(U)) \subset V$. Therefore, $f(spCl(U)) \cap W = \Phi$. and G(f) is strongly sp-closed in $X \times Y$.

REFERENCES

- 1. M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ. A, 12 (1983), 77-90.
- 2. M. E. Abd El-Monsef, A. N. Geaisa and R. A. Mahmoud, β-regular space, Proc. Math. Phys. Soc. Egypt 60 (1985), 47-52.
- 3. D Andrijevic, Semi-preopen sets, Mat. Vesik 38 (1986), 24-32.
- 4. J. Borsik, On almost quasicontinuous functions, Math. Bohemica 118 (1993), 241-248.
- 5. J. Borsik and J. Doboš, On decompositions of quasicontinuity, Real Anal. Exchange 16 (1990/91), 292-305.
- 6. J. Ewert, On almost quasicontinuity of functions, Tatra Mountains Math. Publ. 2 (1993), 81–91.
 - 7. P. K. Ghosh and P. Bhattacharyya, Weakly semi-precontinuous functions, Bull. Calcutta Math. Soc. 90 (1998), 379-388.
- 8. R. A. Mahmoud and M. E. Abd El-Monsef, β -irresolute and β -topological invariant, Proc. Pakistan Acad. Sci. 27 (1990), 285-296.
 - 9. O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965),
- 10. T. Noiri, On δ-continuous functions, J. Korean Math. Soc. 16 (1980), 161-166.

- 11. T. Noiri and V. Popa, Weak forms of faint-continuity, Bull, Math. Soc. Sci. Math. Roumanie 34(82) (1990), 263-270.
- 12. T. Noiri and V. Popa, On almost β -continuous functions, Acta Math. Hungar. 79 (1998), 329-339.
- 13. J. H. Park and Y. B. Park, On Sp-regular spaces, J. Indian Acad. Math. 17 (1995), 212-218.
- 14. V. Popa and T. Noiri, On β -continuous functions, Real Anal. Exchange 18 (1992/93), 544-548.
- 15. V. Popa and T. Noiri, Weakly β-continuous functions, Anal. Univ. Timisoara Ser. Mat.-Inform 32 (1994), 83–92.
- 16. N. V. Veličko, H-closed Topological spaces, Amer. Math. Soc. Transl. (2) 78 (1968), 103–118.

Takashi Noiri Department of Mathematics Yatsushiro College of Technology Yatsushiro, Kumamoto, 8668501 JAPAN

e-mail: noiri@as.yatsushiro-nct.ac.jp

Valeriu Popa Department of Mathematics University of Bacau 5500 Bacau **RUMANIA** e-mail: vpopa@ub.ro