\mathcal{H}^* RELATION ON A π -INVERSE SEMIGROUP

LICENSES THANK WHEEL.

YUFEN ZHANG, GANG LI, XINZHAI XU

ABSTRACT: The aim of this paper is to give a necessary and sufficient condition for the \mathcal{H}^* relation to be a congruence on a π -inverse semigroup. The work of M. K. Sen on an inverse semigroup is further developed.

AMS: 20M10

Key words: π -inverse semigroup, GV-inverse semigroup, \mathcal{H}^* relation, Congruence.

1. INTRODUCTION

In [1], generalized Green's relations L^* , R^* , H^* , T on π -regular semigroups are defined. It is noted that \mathcal{H}^* relation is a congruence on quasi-clifford semigroups and GV-inverse semigroups. However, \mathcal{H}^* relation is not necessary a congruence on π -orthodox semigroups, π -inverse semigroups, strong π -inverse semigroups, and even GV-semigroups. We will give a necessary and sufficient condition for the \mathcal{H}^* relation to be a congruence on π -inverse semigroups. As a corollary, the result of [3] is given.

An element a of semigroup S is called π -regular if there exists a positive integer m such that $a^m \in a^m S a^m$. The semigroup is called π -regular if all its elements are π -regular. In particular, if a π -regular semigroup contains only one idemodent, then it is called a π -group. By a π -inverse semigroup, we mean a π -regular semigroup in which every regular element has an unique inverse element. Call a π -inverse semigroup stong if its set of idempotents forms a subsemigroup. A semigroup is called a GV-semigroup if it is π -regular and all its regular elements are completely regular. Call a GV-semigroup GV-inverse if it is π -inverse. By a quasi-clifford semigroup, we mean a GV-inverse semigroup whose set of idempotents forms a semilattice.

Throughtout this paper, E(S) is the set of all idempotents of the semigroup S, and Reg S is the set of all regular elements of the semigroup S. Also, we write $a^n = r(a)$, where ted and amount of the parameter of the contract of the contrac

^{*}This work is supported by Shan Dong Natural Science Fundation (Y99A03) and Shan Dong . Reported to established a 2 2 Education Committee Foundation (J01P01).

a is an arbitrary element of the π -regular semigroup S and n is the smallest positive integer such that $a^n \in Reg S$. For the sake of convenience, we just call n the smallest regular power of a.

In [1], *-Green's relations on the π -regular semigroup S are introduced:

$$a\mathcal{L}^*b \iff Sr(a) = Sr(b);$$

 $a\mathcal{R}^*b \iff r(a)S = r(b)S;$
 $aT^*b \iff Sr(a)S = Sr(b)S;$
 $\mathcal{H}^* = \mathcal{L}^* \cap \mathcal{R}^*.$

Throughout this paper, \mathcal{L}^* , \mathcal{R}^* and \mathcal{H}^* are *-Green's relations on the semigroup S. For other notations and terminologies not given in this paper, the reader is referred to the texts of J. M. Howie [2] and Bogdanovic [1].

2. PRELIMINARIES

We give here some descriptions for the π -inverse semigroups, the GV-inverse semigroups and the \mathcal{H}^* relations on the π -inverse semigroups.

Lemma 2.1. [1] Let S be a π -regular semigroup. Then

- 1. H_e^* is a π -group, for all $e \in E(S)$, where H_e^* is the \mathcal{H}^* -class containing e of S;
- 2. $a\mathcal{H}^*b$ if and only if there exists $a' \in V(r(a))$ and $b' \in V(r(b))$ such that r(a)a' = r(b)b' and a'r(a) = b'r(b), for all $a, b \in S$;
- 3. If S is a π -group, then the group RegS is an ideal of S;
- 4. S is π -inverse if and only if there exists a positive integer n such that $(ef)^n = (fe)^n \in E(S)$, for all $e, f \in E(S)$;
- 5. S is strong π -inverse if and only if E(S) is a semilattice; if and only if RegS is an inverse subsemigroup;
 - 6. S is a quasi-clifford semigroup if and only if RegS is a clifford subsemigroup of S.

Lemma 2.2. [1] Let S be a π -regular semigroup. Then the following conditions are equivalent:

- good seed 15.1. S is GV-inverse;
 - 2. S is a semilattice of π -groups;

- 3. S is a GV-semigroup and there exists a positive integer n such that $(ef)^n = (fe)^n$, for all e, f E(S);
- 4. $\mathcal{H}^* = \mathcal{T}^*$ is a semilattice congruence on S.

Lemma 2.3. Let S be a π -inverse semigroup and $a\mathcal{H}^*b$ where $a, b \in S$. Then $r(a)r(b)^{-1}$, $r(b)r(a)^{-1}$, $r(a)^{-1}r(b)$, and $r(b)^{-1}r(a) \in \bigcup_{e \in E(s)} H_e^*$

Proof. Let n be the smallest regular power of $r(a)r(b)^{-1}$. Then, by the definition of \mathcal{H}^* , we have $r(a)r(b)^{-1}\mathcal{H}^*(r(a)r(b)^{-1})^n$. We show here $(r(a)r(b)^{-1})^n\mathcal{H}^*r(b)r(b)^{-1}$. Noting that S is a π -inverse semigroup and using (2) of Lemma 2.1, we can show

$$Sr(a)r(b)^{-1} = Sr(b)r(b)^{-1}r(b)r(b)^{-1}$$

$$= Sr(b)r(a)^{-1}r(a)r(b)^{-1}$$

$$\subseteq Sr(a)r(b)^{-1}$$

$$= Sr(a)r(a)^{-1}r(a)r(b)^{-1}$$

$$= Sr(b)r(b)^{-1}r(a)r(b)^{-1}$$

$$= Sr(b)r(b)^{-1}r(b)r(b)^{-1}r(a)r(b)^{-1}$$

$$= Sr(b)r(a)^{-1}r(a)r(b)^{-1}r(a)r(b)^{-1}$$

$$= Sr(b)r(a)^{-1}(r(a)r(b)^{-1})^{2}$$

$$= Sr(b)r(a)^{-1}r(b)r(b)^{-1}(r(a)r(b)^{-1})^{2}$$

$$\subseteq Sr(b)r(a)^{-1}(r(a)r(b)^{-1})^{3}$$

$$\subseteq Sr(b)r(b)^{-1}(r(a)r(b)^{-1})^{3}$$

$$\subseteq Sr(b)r(b)^{-1}(r(a)r(b)^{-1})^{3}$$

$$\subseteq Sr(b)r(b)^{-1}(r(a)r(b)^{-1})^{3}$$

$$\subseteq Sr(a)r(b)^{-1}(r(a)r(b)^{-1})^{3}$$

Also,

$$S(r(a)r(b)^{-1})^n = S(r(a)r(b)^n r(b)r(b)^{-1}$$

 $\subseteq Sr(b)r(b)^{-1}$.

Hence,

$$(r(a)r(b)^{-1})^n \mathcal{L}^*r(b)r(b)^{-1}.$$

Similarly,

$$(r(a)r(b)^{-1})^{\mathsf{n}} \mathcal{R}^*r(b)r(b)^{-1}.$$

As a consequence, we derive that
$$(r(a)r(b)^{-l}) \mathcal{H}^*(r(a)r(b)^{-l}\mathcal{H}^*r(b)r(b)^{-l}.$$

This leads to $r(a)r(b)^{-1} \in \bigcup_{e \in E(S)} H_e^*$. Similarly, we can show that $r(b)r(a)^{-1}, r(a)^{-1}r(b)$ and

 $r(b)^{-1}r(a) \in \bigcup_{e \in E(S)} H_e^*$. The proof is completed.

Lemma 2.4. Let S be a π -inverse semigroup and \mathcal{H}^* is a congruence on S. Then $\bigcup H_e^*$ is a GV-inverse subsemigroup of S.

Proof. Suppose that $a \in H_e^*$ and $b \in H_f^*$ where $e, f \in E(S)$. Let n be a positive integer such that $(ef)^n = (fe)^n \in E(S)$. Because \mathcal{H}^* is a congruence on S, we have $ab\mathcal{H}^*ef$ and $(ab)^n \mathcal{H}^*(ef)^n = (fe)^n \mathcal{H}^*(ba)^n$. If we let m be the smallest regular power of ab and k be a positive integer such that $m^k \ge n$, then

 $ab\mathcal{H}^*(ab)^m\mathcal{H}^*(ab)^{m^2}\mathcal{H}^*...\mathcal{H}^*(ab)^{m^k}\mathcal{H}^*(ef)^{m^k}\mathcal{H}^*(ef)^n$

Hence $ab \in \bigcup_{g \in E(S)} H_g^*$ since $(ef)^n \in E(S)$. Thus, by $a\mathcal{H}^*r(a)$, $\bigcup_{e \in E(S)} H_e^*$ is a π -regular subsemigroup of S. Similarly, $ba\mathcal{H}^*(fe)^n$. Consequently, $ab\mathcal{H}^*ba$. This means that \mathcal{H}^* is a semilattice congruence on $\bigcup_{e \in E(S)} H_e^*$. Hence, by Lemma 2.1 and Lemma 2.2, we finally obtain

 $\bigcup_{e \in E(S)} H_e^* \text{ is a GV-inverse subsemigroup of } S.$

3. MAIN RESULTS

Theorem 3.1. Let S be a π -inverse semigroup. Then \mathcal{H}^* relation is a congruence on S if and only if $T = \bigcup_{e \in E(S)} H_e^*$ is a GV-inverse subsemigroup of S and $r(ab)\mathcal{H}^*r(a)r(b)$ for

all $a,b \in S$

Proof. By the above lemmas, we only need to prove the sufficiency.

Suppose now T is a GV-inverse subsemigroup of S and $r(ab)\mathcal{H}^*r(a)r(b)$ for all a,b \in S. Let $a\mathcal{H}^*b$, then by Lemma 2.3, we have $r(a)r(b)^{-1}$, $r(b)r(a)^{-1}$, $r(a)^{-1}r(b)$ and $r(b)r(a)^{-1}$ \in T. If we write \mathcal{H}^{*^T} for the \mathcal{H}^* relation on T, then since T is GV-inverse semigroup, \mathcal{H}^{*^T} is a semilattice congruence on T. Suppose that $c \in S$, using the above facts, we immediately have

$$r(c)^{-1}r(c)r(a)r(b)^{-1}\mathcal{H}^{*^{T}}r(a)r(b)^{-1}r(c)^{-1}r(c)$$

$$\mathcal{H}^{*^{T}}r(a)r(b)^{-1}r(b)r(b)^{-1}r(c)^{-1}r(c)\mathcal{H}^{*^{T}}r(a)r(b)^{-1}r(c)^{-1}r(c)r(b)r(b)^{-1}$$

Hence, there exists $x \in T$ such that $r(c)^{-1}r(c)r(a)r(b)^{-1} = xr(a)r(b)^{-1}r(c)^{-1}r(c)r(b)r(b)^{-1}$. By noting that $r(b)^{-1}r(b) = r(a)^{-1}r(a)$, we can show

$$r(c)r(b) = r(c)r(c)^{-1}r(c)r(a)r(b)^{-1}r(b) = [r(c)xr(a)r(b)^{-1}r(c)^{-1}]r(c)r(b)$$

Similarly, there exists $y \in T$ such that

$$r(c)r(b) = [r(c)yr(a)r(b)r(a)^{-1}]r(c)r(a).$$

Consequently, we derive that $r(c)r(a)\mathcal{L}^*r(c)r(b)$. Also it is obvious that $r(c)r(a)\mathcal{R}^*r(c)r(b)$.

Hence $r(c)r(a)\mathcal{H}^*r(c)r(b)$. Thereby, $ca\mathcal{H}^*r(ca)\mathcal{H}^*r(c)r(a)\mathcal{H}^*r(c)r(b)\mathcal{H}^*r(cb)\mathcal{H}^*cb$. This shows the \mathcal{H}^* relation on S is a left congruence on S. In the same way, we can obtain ac \mathcal{H}^*bc , that is \mathcal{H}^* is right compatible. Thus, \mathcal{H}^* is indeed a congruence on S. The proof is completed.

Corollary 3.2. Let S be a strong π -inverse semigroup. Then \mathcal{H}^* is a congruence on S if and only if $T = \bigcup_{e \in E(s)} H_e^*$ is a quasi-clifford subsemigroup of S and $r(ab)\mathcal{H}^*r(a)r(b)$ for

all $a,b \in S$.

Proof. By noting that a GV-inverse semigroup whose set of all idempotents forms a semilattice is a quasi-clifford semigroup, the proof is completed.

Corollary 3.3 [3] Let S be a inverse semigroup, then \mathcal{H}^* is a congruence on S if and only if $\bigcup_{e \in F(s)} H_e^*$ is a clifford subsemigroup of S.

REFERENCES

- 1. S. Bogdanovic, Semigroup with a system of subsemigroups, Yogoslavia, Novysad, 1985.
- 2. J. M. Howie, An introduction to semigroup theory, Academic Press, London, 1976.
- 3. M. K. Sen, M. X. Yang and Y. Q. Guo, A note on \mathcal{H} relation on an inverse semigroup, Jour. Pure Math. 14 (1997), 1-3.

Department of Mathematics Shandong Normal University Jinan, Shandong, 250014 P. R. China