A NOTE ON ${\mathcal H}$ RELATION ON AN INVERSE SEMIGROUP

M. K. Sen, H. X. Yang and Y. Q. Guo

ABSTRACT. \mathcal{H} relation is studied on an inverse semigroup and it is established that an inverse semigroup is cryptic if and only if it is group closed.

 \mathcal{H} relation on an inverse semigroup S is not in general a congruence relation. If S is a group bound inverse semigroup, then also \mathcal{H} relation may not be a congruence relation. In this short note we want to show that an inverse semigroup is cryptic [1] (ie, \mathcal{H} is a congruence relation) if and only if it is group closed (i.e, $G_r(S)$ is a subsemigroup of S).

Definition 1. [2] A semigroup S is said to be group bound if some power of each element of S lies in a subgroup of S. An element a of a semigroup S is said to be a group element if a lies in a subgroup of S. We give an example of an inverse semigroup which is group bound but not cryptic.

Example 2. Let $X = \{1, 2, 3\}$, and $\mathcal{I}(X)$ be the symmetric inverse semigroup on X. Since $\mathcal{I}(X)$ is finite, $\mathcal{I}(X)$ is group bound. Since

$$\left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \right\} \text{ is subgroup of } \mathscr{I} (X). \quad \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \text{ is a group element. But}$$

$$\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$

Hence $\begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$ is not in the same $\mathcal H$ class as $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$. Consequently $\mathcal H$ is not a congruence relation on S.

Next we give an example of group bound inverse semigroup which is not a Clifford semigroup but $\mathcal H$ is a congruence relation.

Example 3. Let S = { a, b, c, d, o }. Define a binary operation on S by the following table :

	а	b	С	d	0
а	0 0 0 a	d	а	0	0
b	С	0	0	b	0
С	0	b	С	0	0
d	а	0	0	d	0
0	0	0	0	0	0

It can be checked easily that (S,.) is a group bound inverse semigroup on which $\mathcal H$ relation is a congruence relation but not a Clifford semigroup.

Theorem 4. Let S be an inverse semigroup. The following conditions are equivalent on S:

- (i) $\mathcal H$ is a congruece relation on S.
- (ii) $G_r(S)$ (the set of all group elements of S is a Clifford subsemigroup of S.
- (iii) $(\forall e \in E (S), \forall a \in G_r(S) ea, ae \in G_r(S).$
- (iv) $(\forall e \in E (S), \forall a \in G_r(S) ea = ae, i.e, E (S) \subseteq C (G_r(S)).$

Proof. (i) \Rightarrow (ii). Let a, b \in G_r(S). There exist idempotents e, f of S such that a \in H_e and b \in H_r. Since \mathcal{H} is a congruence relation, ab \in H_{ef}. So, G_r(S) is a subsemigroup of S. Let e \in E (S), a \in G_r(S). We show that ea = ae. Assume that a \in H_r for some $f \in$ E (S). Then ea \mathcal{H} ef and ae \mathcal{H} fe. Hence ea \mathcal{H} ae which implies that eaa⁻¹ \mathcal{H} aea⁻¹, where a⁻¹ is the group inverse of a. Now eaa⁻¹, aea⁻¹ \in E (S). Consequently, eaa⁻¹ = aea⁻¹ and this shows that ea = (eaa⁻¹)a = (aea⁻¹)a = aa⁻¹ae = ae.

(ii)⇒(iii). It is obvious.

(iii) \Rightarrow (iv). Suppose that ea \in H_f and ae \in H_g., where f, g \in E (S). There exists $x \in$ H_f such that eax = f. Then fe = ef = e(eax) = eax = f. Similarly, eg = ge = g. Now eae = (ea)e = f(ea)e = f(ae), eae = e(ae) = eg(ae) = g(ae). Let (ae)⁻¹ be the group inverse of ae. Then f (ae) (ae)⁻¹ = g (ae) (ae)⁻¹, i.e, fg = g. Similarly we can show that fg = f. Hence f = g. Now, ea = (ea)f = (eae)f = e(ae)f = eae, and ae = f(ae) = f(eae) = f(eae)e = eae. Hence ea = ae.

(iv) \Rightarrow (i). Assume that a $\mathcal H$ b. There exist x, y $\in H_{a^{-1}a}$, u, v $\in H_{aa}^{-1}$ such that a = bx, b = ay, a = ub and b = va. Now, $ca = cub = cc^{-1}cub = cuc^{-1}cb$. This implies that $ca \in Scb$. Again, $cb = cc^{-1}cb = c(c^{-1}c)va = cvc^{-1}ca$, which shows that $cb \in Sca$. Hence $ca \ \mathcal L$ cb. Obviously, $ca \ \mathcal R$ cb. Thus it follows that $ca \ \mathcal H$ cb. Similarly we can show that $ac \ \mathcal H$ bc. Therefore, $\mathcal H$ is a congruence relation.

Definition 5. A semigroup S is said to be quasisemilattice if it is inverse, perodic and $\mathcal{H} = \mathbf{1_s}$.

Theorem 6. An inverse semigroup S is cryptic and group bound if and only if it is a quasi semilattice of groups (i.e, there exists a congruence ρ on S such that S/ ρ is a quasisemilattice and each $e\rho$ is a group for every $e \in E$ (s)).

Proof. (⇒) This follows immediately.

(\Leftarrow). Suppose that there exists a congruence ρ such that S/ ρ is a quasi semilattice and each e ρ is a group for every $e \in E$ (S). Let $a \in S$. By the hypothesis, there exists a natural number n such that $(a\rho)^n$ is an idempotent. By Lallement's Lemma, we have that $a^n\rho = e\rho$ for some $e \in E(S)$. Since $e\rho$ is a group, a^n lies in a subgroup of S. So S is group bound. Obviously ρ is idempotent seperating, and hence $\rho \subseteq \mathcal{H}$. Let $(a,b) \in \mathcal{H}$. Then $a\rho \ \mathcal{H}b\rho$. Since S/ρ is a quasisemilattice, the relation \mathcal{H} is the identity relation on S/ρ . Hence $a\rho = b\rho$, showing that $(a,b) \in \rho$. Thus it follows that $\mathcal{H} = \rho$. Consequently, \mathcal{H} is a congruence relation on S.

REFERENCES

- N.R. Reilly, Minimal non-cryptic varieties of inverse semigroups, Quart. J. Math. Oxford (2) 36 (1985) 467-487.
- 2. T.E. Hall and W. D. Munn, Semigroups satisfying minimal conditions II, Glasgow Math. J. 20 (1979), 133-140.

Department of Pure Mathematics University of Calcutta 35, Ballygunge Circular Road Calcutta 700 019, India Institute of Basic Mathematics Yunnan University Kunming, P.R. China