CHARACTERIZATIONS OF BITOPOLOGICAL QHC SPACES VIA CERTAIN CLASSES OF SETS

J. N. NANDI AND M. N. MUKHERJEE

ABSTRACT: In the present article, certain new types of sets are introduced for a bitopological space. This provides a new approach towards the study of bitopological quasi H-closed spaces; a few characterizations of such a space are established here to justify the contention.

Key Words : ij- θ °-set, ij- θ P°-set, ij-QHC space, ij- α -open sets, ij- α -closure.

1990 AMS Subject Classification: 54 E 55

H-closed and quasi H-closed (QHC) spaces are extremely well known concepts

of topology, and the same have so far been studied to a great extent. Extensions of these concepts in bitopological setting have also been investigated by many (e.g. see [3, 5, 7, 9]). The present paper is a continuation of the latter study, and we have introduced here certain types of sets which play key roles in characterizing a bitopological QHC space from an altogether new view point.

Throughout the paper, by a space (X, Q_1, Q_2) or simply by X we shall mean a bitopological space [4] X endowed with two arbitrary topologies Q_1 , and Q_2 . For a subset A of (X, Q_1, Q_2) , Q_1 -int A and Q_1 -cl A will respectively stand for the interior and closure of A in (X, Q_1) , where i=1, Q. According to Kariofillis [3], a point Q in (X, Q_1, Q_2) is said to be in the ij-Q-closure of a subset Q of Q, written as Q if for every Q-open set Q containing Q, Q-cl Q is a subset Q, where and henceforth in every such sentence involving both Q is an assume Q, where and henceforth in every such sentence involving both Q is an assume Q, where and henceforth in every such set. The ij-Q-cl Q is a set Q in Q is a set Q in Q in

A set A in (X, Q_1 , Q_2) is called ij- δ -closed [10] iff for each $x \in (X - A)$, there is a Q_1 -open set U containing x such that (Q_1 -int Q_1 -cl U) \cap A = \emptyset . The set A is called ij- δ -open [10] iff (X - A) is ij- δ -closed. The class of all ij- δ -open sets in X forms a

topology Q_i^s , called the ij-semiregularization topology [8, 12] such that $Q_i^s \subset Q_i$, and the family of all ij-ro sets of (X, Q_1, Q_2) forms a base for Q_i . A property P of a bitopological space (X, Q_1, Q_2) is called a pairwise semiregular property [8] provided (X, Q_1, Q_2) has P iff (X, Q_1^s, Q_2^s) possesses P. We now state a few known results that we shall use in course of the subsequent deliberations.

Theorem 1. [1, 3, 8, 9, 10] For a bitopological space (X, Q_1, Q_2) the following hold:

- (a) The collection of ij- θ -open sets in X forms a topology Q_i^{θ} on X such that $Q_i^{\theta} \subset Q_i^{s} \subset Q_i$.
 - (b) If $A \subset B \subset X$, then $ij-\theta$ -int $A \subset ij-\theta$ -int B and $ij-\theta$ -cl $A \subset ij-\theta$ -cl B.
 - (c) If A (\subset X) is Q_j-closed, then Q_i-int A = Q_i^s int A = ij- θ -int A.
 - (d) If A is Q_i -open in X, then Q_i -cl A = Q_i^s -cl A = ij- θ -cl A.

We now introduce the following definition.

Definition 2. A set A in a space (X, Q1, Q2) is called an

- (i) ij- θ °-set iff $A = ij-\theta$ -int B, for some $B \subset X$,
- (ii) ij- θ ^c-set iff A = ij- θ -cl B, for some B \subset X.

Note 3. It is easy to see that for any set A in X, ij- θ -cl (X - A) = X - (ij- θ -int A). Thus a set A is an ij- θ °-set iff (X - A) is an ij- θ °-set.

Proposition 4. For any two sets A and B in a space X,

- (a) $ij-\theta-cl$ (A \cup B) = $(ij-\theta-cl$ A) \cup $(ij-\theta-cl$ B)
- (b) $ij-\theta$ -int (A \cap B) = ($ij-\theta$ -int A) \cap ($ij-\theta$ -int B).

Proof. (a) Clearly, (ij- θ -cl A) \cup (ij- θ -cl B) \subset ij- θ -cl (A \cup B). Now, $x \notin$ (ij- θ -cl A) \cup (ij- θ -cl B) \Rightarrow there exist Q_j-open sets U, V containing x such that A \cap Q_j-cl U = B \cap Q_j-cl V = \varnothing . Then U \cap V is a Q₁-open set containing x such that (A \cup B) \cap Q_j-cl (U \cap V) = \varnothing . Hence $x \notin$ ij- θ -cl (AUB).

(b) Similar to (a) and is omitted.

Corollary 5. The family $\sigma_{ij} = \{ij-\theta\text{-int } A : A \subset X\}$ forms a base for some topology Q_i (σ_{ii}) on X.

Again, from Theorem 1 (c) it follows that

Proposition 6. Every ij-roset is an ij- θ °-set.

It is known [9] that for any subset A of a space (X, Q_1, Q_2) , $ij-\theta-cl\ A = \cap \{Q_i-cl\ V : A \subset V \in Q_i\}$. It then follows that $ij-\theta-int\ A = U\ \{Q_i-int\ V : V \subset A\ and\ V\ is\ Q_i-closed\ in\ X\}$. Hence we obtain :

Theorem 7. Every ij- θ °-set is the union of ij-rosets and hence is ij- δ -open as well as Q-open.

It now readily follows in view of corollary 5, Theorem 7 and proposition 6 that

Theorem 8. For a space (X, Q_1, Q_2) , $Q_j(\sigma_{ij}) = Q_i^{\theta}$ and hence σ_{ij} forms an open base for the semiregularization topology Q_i^s on X.

Theorem 9. [5] A space (X, Q_1, Q_2) is said to be ij-QHC iff every Q_i -open cover of X has a finite Q_j -proximate subcover (i.e., a finite subfamily the union of whose members is Q_i -dense in X).

Theorem 10. A space (X, Q_1 , Q_2) is ij-QHC iff whenever μ is a cover of X by ji- θ^c -sets such that for each point x of X some member of μ is a Q_i - neighbourhood of x, then μ has a finite subcover.

Proof. Let μ be a cover of an ij-QHC space X by ji- θ^c -sets with the stated property. For each $x \in X$, there exist a $U_x \in \mu$ and a Q_i -open set V_x such that $x \in V_x \subset U_x$. The collection $\{V_x : x \in X\}$ is then a Q_i -open cover of X, and consequently by ij-QHC

property of X, there is a finite subset $\{x_1, x_2, \dots, x_n\}$ of X such that $X = \bigcup_{k=1}^n Q_j$ -cl

$$V_{x_k} \subset \bigcup_{k=1}^n Q_j$$
-cl $U_{x_k} = \bigcup_{k=1}^n U_{x_k}$, since U_{x_k} 's are Q_j -closed sets.

Coversely, let the given condition hold for a space X and μ be a Q_i -open cover of X. For each $x \in X$, there exists $U_x \in \mu$ such that $x \in U_x$. By Theorem 1 (d) we have, $V_x = Q_i$ - cl $U_x = ji$ - θ -cl U_x and hence V_x is a ji- θ -set for each $x \in X$. Then $\{V_x \in X\}$ is a cover of X by ji- θ -sets with the stipulated property. Thus we obtain,

 $X = \bigcup_{k=1}^{n} V_{x_k} = \bigcup_{k=1}^{n} Q_j$ -cl U_{x_k} for a finite subset $(x_1, x_2, ..., x_n)$ of X, and this proves that X is ij-QHC.

Definition 11. A family \mathscr{F} of sets in a space (X, Q_1, Q_2) is said to possess ij- θ° -FIP iff the ij- θ -interior of every finite intersection of members of \mathscr{F} is non-void.

Theorem 12. A space (X, Q₁, Q₂) is ij-QHC iff every family of ij- θ^c -sets with ji- θ^c -FIP has non-null intersection.

Proof. Let X be an ij-QHC space and $\{F_\alpha:\alpha\in\Lambda\}$ be a family of ij- θ° -sets in X with ji- θ° -FIP. If $\bigcap_{\alpha\in\Lambda}F_\alpha=\varnothing$, then $\mu=\{X-F_\alpha:\alpha\in\Lambda\}$ is a cover of X by ij- θ° -sets and hence μ is also a Q_i-open cover of X. Since X is ij-QHC, we have :

$$X = \bigcup_{k=1}^{n} Q_{j}\text{-cl } (X - F_{\alpha_{k}}) \text{ for a finite subcollection } \{X - F_{\alpha_{1}}, X - F_{\alpha_{2}}, ... X - F_{\alpha_{n}}\} \text{ of } \mu.$$

Thus
$$\emptyset = X - \bigcup_{k=1}^{n} Q_j$$
-cl $(X - F_{\alpha_k}) = \bigcap_{k=1}^{n} Q_j$ -int $F_{\alpha_k} = \bigcap_{k=1}^{n} \text{ ji-θ-int } F_{\alpha_k} \text{ (by theorem 1 (c))} = \bigcap_{k=1}^{n} Q_j$ -int $F_{\alpha_k} = \bigcap_{k=1}^{n} \text{ ji-θ-int } F_{\alpha_k} = \bigcap_{k=1}$

 $\text{ji-}\theta\text{-int}$ $\left(\bigcap_{k=1}^n F_{\alpha_k}\right)$ [by Proposition 4 (b)], which contradicts that $\{F_\alpha:\alpha\in\Lambda\}$ has $\text{ji-}\theta^\circ\text{-}F$].

Conversely, let the given condition hold in a space X. We first show that (X, Q_1^s, Q_2^s) is ij-QHC. Since the family of all ij- θ° -sets of X forms a base for Q_i^s , it suffices to show that every cover of X by ij- θ° -sets has a finite Q_j^s -proximate subcover. So let $\mu = \{U_\alpha : \alpha \in \Lambda\}$ be a cover of X by ij- θ° -sets. Then $\{X - U_\alpha : \alpha \in \Lambda\}$ (= \mathscr{F} , say) is a family of ij- θ° -sets with $\cap \mathscr{F} = \varnothing$, so that \mathscr{F} cannot have ji- θ° -FIP. Thus there

exists a finite subset
$$\{X - U_{\alpha_1}, ..., X - U_{\alpha_n}\}$$
 of \mathscr{F} such that $[\bigcap_{k=1}^n (X - U_{\alpha_k})] = \varnothing$.

Then
$$X = X$$
—ji- θ -int $\begin{bmatrix} n \\ \bigcap_{k=1}^{n} (X - U_{\alpha_k}) \end{bmatrix}$ = ji- θ -cl $\begin{bmatrix} n \\ \bigcup_{k=1}^{n} U_{\alpha_k} \end{bmatrix}$ = $\bigcup_{k=1}^{n}$ ji- θ -cl U_{α_k} (by proposition

4 (a)) = $\bigcup_{k=1}^{n} Q_{j}^{s}$ -cl $U_{\alpha_{k}}$ (Since $U_{\alpha_{k}}$'s are Q_{i} -open). Hence (X, Q_{1}^{s} , Q_{2}^{s}) is ij-QHC. Since the property of a space being ij-QHC is known [8] to be a pairwise semiregular property, (X, Q_{1} , Q_{2}) is ij-QHC.

Definition 13. Let $\{U_\alpha:\alpha\in D\}$ be a net of ij- θ° -sets in a space X with the directed set (D,\geq) as its domain. A point x of X is said to be an ij- θ -adherent point of the net if for each $\alpha\in D$ and each Q_i -open set V containing x, there exists $\beta\in D$ with $\beta\geq\alpha$ such that $U_\beta\cap Q_j$ -cl V $\neq\emptyset$.

Theorem 14. A space X is ij-QHC iff every net of non-null ji- θ° -sets has an ij- θ -adherent point.

Proof. Let $\{U_{\alpha}: \alpha \in D\}$ be a net of non-null ji- θ° -sets in the ij-QHC space X. For each $\alpha \in D$, let $F_{\alpha} = ij-\theta$ -cl $[\ \cup\ \{U_{\beta}: \beta \in D \ \text{and} \ \beta \geq \alpha\ \}]$. Then $\mathscr{F} = \{F_{\alpha}: \alpha \in D\}$ is a family of $ij-\theta^{c}$ -sets with $ji-\theta^{\circ}$ -FIP. By Theorem 12 there is an $x \in \bigcap_{\alpha \in D} F_{\alpha}$. Then for any Q_{i} -open set V containing x and $\alpha \in D$ $(Q_{j} - cl\ V) \cap [\cup\ \{U_{\beta}: \beta \in D \ \text{and} \ \beta \geq \alpha\}]$ $\neq \emptyset$. Thus there is some $\beta \in D$ with $\beta \geq \alpha$ such that $(Q_{j}.cl\ V) \cap U_{\beta} \neq \emptyset$. Hence the net $\{U_{\alpha}: \alpha \in D\}$ of $ji-\theta^{c}$ -sets in X has an $ij-\theta$ -adherent point in X.

Conversely, let \mathscr{F} be a collection of ij- θ^c -sets in X with ji- θ^c -FIP. Then the family \mathscr{F} of all finite intersections of members of \mathscr{F} becomes a directed set under the relation \geq , where $F_1 \geq F_2$ iff $F_1 \subset F_2$ (F_1 , $F_2 \in \mathscr{F}$). For each $F \in \mathscr{F}$, we assign the set ji- θ -int F which is non-null, as \mathscr{F} has ji- θ^c -FIP. Then $\{ji$ - θ -int $F: F \in (\mathscr{F}, \geq)\}$ is a net of non empty ji- θ^c -sets in X. By hypothesis, some point x of X is an ij- θ -adherent point of this net. We only show that $x \in \cap \mathscr{F}$, the rest follows from Theorem 12. Let $F \in \mathscr{F}$ and V be a Q_i -open nbd of x. Since $F \in \mathscr{F}$, there is some $G \in \mathscr{F}$ with $G \geq F$ (i.e., $G \subset F$) such that (ji- θ -int $G) \cap Q_i$ - G

Let us now set the following definition of another class of sets in a bitopological space.

Definition 15. A subset A of a space (X, Q_1 , Q_2) is said to be ij- α -open if A $\subset Q_1$ -int Q_1 -Cl Q_2 -int A.

Remark 16. Clearly, a Q_i -open set is ij- α -open and an ij- α -open set is ij-semiopen (a set A in a space (X, Q_1 , Q_2) is called ij-semiopen [2], iff there exists a Q_i -open set U such that U \subset A \subset Q $_i$ -cl U, or equivalently, A \subset Q $_i$ cl Q $_i$ -int A).

Definition 17. A point x of a space (X, Q_1 , Q_2) is said to be an ij- α -adherent point of a set A (\subset X) if every ij- α -open set U containing x interesects A. The set of all ij- α -adherent points of A will be called the ij- α -closure of A, to be denoted by ij- α -cl A.

Lemma 18. For any ji-semiopen set A in a space X, ij- α -cl A = Q, - cl A.

Proof. Clearly, ij- α -cl $A \subset Q_i$ -cl A, as Q_i -open sets are ij- α -open. Now, $x \not\in ij$ - α -cl $A \Rightarrow$ there is an ij- α -open set V with $x \in V$ such that $A \cap V = \varnothing \Rightarrow Q_i$ -int $A \cap Q_i$ -

Theorem 19. A space (X, Q₁, Q₂) is ij-QHC iff every cover μ of X by ij- α -open sets has α finite subcollection μ_0 such that X = \cup {ji- α -cl U : U $\in \mu_0$ }.

Proof : Let μ be a cover of an ij-QHC space X by ij- α -open sets. For each U $\in \mu$, Q_i -int U $\subset U \subset Q_i$ -int Q_i -int U = V(U) (say).

- \Rightarrow Q_j-cl Q_i-int U \subset Q_j-cl U \subset Q_j-cl V(U) \subset Q_j-cl Q_i-int U
- \Rightarrow Q_j-cl V(U) = Q_j-cl Q_i-int U = Q_j-cl U.

By Remark 16, U is ij-semiopen and hence by Lemma 18, ji- α -cl U = Q_j-cl U. Then ji- α -cl U = Q_j-cl V(U) (by (1))

Since $U\subset V$ (U) $\in Q_i$, for all $U\in \mu$, $\{V(U):U\in \mu\}$ is a Q_i -open cover of X. The ij-QHC property of X then implies that for a finite subcollection μ_0 of μ , X = Q_i -cl $V(U):U\in \mu_0$ = Q_i (ji- α -cl $U:U\in \mu_0$).

Conversely, suppose μ is a Q_i -open cover of a space X for which the given condition holds. Then by Remark 16, μ is also a cover of X by ij- α -open sets. Thus for a finite subcollection μ_0 of μ , X = \cup {ji- α -cl U : U \in μ_0 }. By Remark 16 and Lemma 18, X = \cup { Q_i -cl U : U \in μ_0 } proving that X is ij-QHC.

REFERENCES

- 1. G. K. Banerjee, On pairwise almost strongly $\,\theta$ -continuous mappings, Bull. Cal. Math. Soc. 79 (1987), 314-320.
- 2. S. Bose, Semi-open sets, semi-continuity and semi-open mappings in bitopological spaces, Bull. Cal. Math. Soc. 73 (1981), 237-246.
- 3. C. G. Kariofillis, On pairwise almost compactness, Ann. Soc. Sci. Bruxelles 100 (1986), 129-137.
- 4. J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 3 (13) (1963), 71-89.
- 5. M. N. Mukherjee, On pairwise almost compactness and pairwise H-closedness in a bitopological space, Ann. Soc. Sci. Bruxelles 96 (1982), 98-106.
- 6. M. N. Mukherjee, On pairwise S-closed bitopological spaces, Internat. J. Math. & Math. Sci. 8 (4) (1985), 729-745.
- 7. M. N. Mukherjee and G. K. Banerjee, A note on QHC and interiorly QHC bitopological spaces, Ann. Stiin. AL. Univ. "AL-I-CUZA" Din IASI 33 (1987), 93-98.
- 8. M. N. Mukherjee and G. K. Banerjee, Pairwise semiregularization and submaximality of a bitopological space, Ann. Stiin. AL. Univ. "AL-I-CUZA" Din IASI 34 (1988), 19-24.
- 9. M. N. Mukherjee, G. K. Banerjee and S. Malakar, Bitopological QHC spaces, Indian Jour. Pure Appl. Math. 21 (7) (1990), 639-648.
- J. N. Nandi, Bitopological near compactness I: Characterizations, Bull. Cal. Math. Soc. 85 (1993), 337-344.
- S. K. Sen, J. N. Nandi and M. N. Mukherjee, characterizations of some bitopological separation axioms in terms of ij-θ-closure operator, Mat. Vesnik 44 (1992), 75-82.
- 12. A. R. Singal and S. P. Arya, On pairwise almost regular spaces, Glasnik Mat. 6 (26) (1971), 335-343.

Department of Pure Mathematics University of Calcutta 35, Ballygunge Circular Road Calcutta 700 019, India