INVERSE r—SEMIGROUP

N. K. SAHA AND A. SETH

Intro duction:

In [1] Sen and Saha defined a Γ —semigroup, regular Γ —semigroup and studied some properties of regular Γ —semigroup. The aim of this paper is to introduce inverse Γ —semigroup. Along this way, we deduce necessary and sufficient condition for a Γ —semigroup to be inverse Γ —semigroup. We show that homomorphic image of an inverse Γ —semigroup is an inverse Γ —semigroup.

1. Preliminaries.

Definition:

Let $M = \{a, b, c, ...\}$ and $\Gamma = \{x, y, z, ...\}$ be two non empty sets. M is called a Γ -semigroup if (i) $axb \in M$ and (ii) (axb) yc = ax (byc) for all a, b, c $\in M$ and for all x, $y \in \Gamma$. A Γ -semigroup M will be denoted by $M(\Gamma)$. Since the associativity of the expression (axb) yc = ax (byc) extends to all expressions of any length, henceforth we omit the bracket in the deduction of proofs of various statements.

Definition:

Let M be a Γ -- semigroup. A non-empty subset B of M is said to be a Γ - sub semigroup of M if B Γ B \subset B.

Definition:

A right (left) ideal of a Γ - semigroup M is a non-empty subset 1 of M such that

I Γ M \subset I (M Γ I \subset I). If I is both a right ideal and left ideal of M then we say that I is an ideal of M.

Definition:

Let M be a Γ — semigroup. An element a ϵ M is said to be regular if a ϵ a Γ M Γ a where a Γ M Γ a = { axbya : b ϵ M and x, y ϵ Γ }. A Γ — semigroup M is said to be regular if every element of M is regular.

Definition:

Let M be a Γ -semigroup. An element $e \in M$ is said to be an idempotent in M if there exists an $x \in \Gamma$ such that exe = e. In this case we say e is an x-idempotent.

Definition:

Let M be a Γ — semigroup and M_1 be a Γ_1 —semigroup. A pair of mappings f_1 : $M \rightarrow M_1$ and $f_2 : \Gamma \rightarrow \Gamma_1$ is said to be a homomorphism from (M, Γ) to (M_1, Γ_1) if (axb) $f_1 = (af_1) (xf_2) (bf_1)$ for all a, b ϵ M and x ϵ Γ . If f_1 and f_2 are both surjective then (f_1, f_2) is said to be a homomorphism from (M, Γ) onto (M_1, Γ_1) .

Definition:

Let M be a Γ -semigroup. Let a, b ϵ M and x ϵ Γ If axb = bxa we say that a, b are x-commutative. A Γ -semigroup M is said to be commutative if axb = bxa for all a, b ϵ M and for all x ϵ Γ .

Definition:

Let M be a Γ -semigroup and a ϵ M. Let b ϵ M and x, y ϵ Γ . b is said to be an (x,y) inverse of a if a = axbya and b = byaxb. In this case we shall write b ϵ V_X^y (a). We may also write b = $a_{x,y}^{-1}$.

If $b \in V_x^y$ (a) then a and b are necessarily regular elements of M. On the other hand

let a = axcya where $c \in M$ and $x, y \in \Gamma$ be a regular element of M. Let b = cyaxc. Then axbya = a and byaxb = b. Thus if a = axcya be a regular element of M then b is an x, y inverse of a where b = cyaxc.

2. Inverse Γ – semigroup

Definition:

A regular Γ — semigroup M is called an inverse Γ — semigroup if $|V|_X^y$ (a) |=1, for all a ϵ M and for all x, y ϵ Γ whenever $|V|_X^y$ (a) $\neq \phi$. That is every element a of M has a unique (x, y) inverse whenever (x, y) inverse of a exists.

Theorem (2, 1):

Let M be a Γ -semigroup. M is an inverse Γ -semigroup if and only if (i) M is regular and (ii) if e and f be any two x-idempotents of M then exf = fxe, where $x \in \Gamma$. **Proof.** Suppose M is an inverse Γ -semigroup. Then by definition M is regular. Next let e and f be two x-idempotents of M. Let a ϵ V_y^Z (exf). Then exfyazexf = exf . . . (1) and azexfya = a . . . (2) Now fyazexfyaze = fyaze by (2). Therefore fyaze is an x-idempotent . . . (3). Also exfxfyazexexf = exf by (1) and fyazexexfxfyaze = fyaze by (3). Hence exf ϵ V_x^X (fyaze . But fyaze being x-idempotent belongs to V_x^X (fyaze). Therefore exf = fyaze since M is an inverse Γ -semigroup. Hence exf is an x-idempotent. Also, fxe is an x-idempotent of M. Indeed, if $b \in V_u^V$ (fxe), then fxeubvfxe = fxe and bvfxeub = b. Then eubvfxeubvf = eubvf. Hence fxe ϵ V_x^X (cubvf). But eubvf being x-idempotent belongs to V_x^X (eubvf). Hence fxe = cubvf. Thus fxe is an x-idempotent of M. Now exfxfxexexf = exfxexf = exf and fxexexfxfxe = fxexfxe = fxe. So, fxe ϵ V_x^X (exf). But exf ϵ V_x^X (exf). Therefore, exf = fxe.

Conversely let (i) and (ii) hold. We shall prove that M is an inverse Γ - semigroup. Let b, $c \in V_X^y$ (a) where $a \in M$. Then axbya = a and $byaxb = b \dots$ (4). axcya = a and $cyaxc = c \dots$ (5). Now each of axb and axc is y-idempotent of M and each of bya and cya is x-idempotent of M. Also axbyaxc = axcyaxb using (ii). Therefore axc = axb. Similarly byaxcya = cyaxbya. Therefore bya = cya. Then b = by (axb) = by (axc) = (bya) xc = (cya)xc = c. Thus M is an inverse Γ — semigroup. This completes the proof. We remember the following definitions:

Definition: Let A and B be two sets. Then any subset of $A \times B$ is called a binary relation from A to B.

Definition: A binary relation f from A to B is said to be an one-one partial transformation from A into B if the following conditions hold

- (i) $(x,y) \in f$, $(x,y') \in f$ implies that y = y'
- (ii) $(x',y) \in f$, $(x,y) \in f$ implies that x = x'

The set of all one-one partial transformations from A into B will be denoted by J (A, B).

Lemma (2.2): J(A,B) is a Γ -semigroup, where $\Gamma = J(B,A)$.

Proof. Let f, g, h, . . . belong to **J** (A,B) and let α , β , γ , . . . belong to **J** (B,A). We define $f \bowtie g = \{(a,b) \in A \times B : \text{there exists } a_1 \in A, b_1 \in B \text{ such that } (a,b_1) \in f, (b_1,a_1) \in \alpha, (a_1,b) \in g\}$. Obviously, $f \bowtie g$ is a binary relation from A to B. Let $(x,y) \in f \bowtie g$ and $(x,y') \in f \bowtie g$. Now $(x,y) \in f \bowtie g$ implies there exist $a_1 \in A$, $b_1 \in B$ such that $(x,b_1) \in f$, $(b_1,a_1) \in \alpha$, $(a_1,y) \in g$ and $(x,y') \in f \bowtie g$ implies there exist $a_2 \in A$, $b_2 \in B$ such that $(x,b_2) \in f$, $(b_2,a_2) \in \alpha$, $(a_2,y') \in g$. Now from $(x,b_1) \in f$ and $(x,b_2) \in f$ we get $b_1 = b_2$. Therefore $(b_1,a_1) \in \alpha$, $(b_2,a_2) \in \alpha$ implies that $(b_1,a_1) \in \alpha$, $(b_1,a_2) \in \alpha$. Hence $a_1 = a_2$. So, $(a_1,y) \in g$, $(a_2,y') \in g$ implies that y = y'. Thus $(x,y) \in f \bowtie g$, $(x,y') \in f \bowtie g$ implies that y = y'. Next let $(x,b_1) \in f$, $(b_1,a_1) \in \alpha$, $(a_1,y) \in g$ and $(x',y) \in f \bowtie g$. Now $(x,y) \in f \bowtie g$ implies there exist $a_1 \in A$, $b_1 \in B$ such that $(x,b_1) \in f$, $(b_1,a_1) \in \alpha$, $(a_1,y) \in g$ and $(x',y) \in g$ implies there exist $a_2 \in A$, $b_2 \in B$ such that $(x,b_1) \in f$, $(b_1,a_1) \in \alpha$, $(a_2,y) \in g$ and $(x',y) \in g$ implies there exist $a_2 \in A$, $a_2 \in B$ such that $(x',b_2) \in f$, $(a_2,a_2) \in \alpha$, $(a_2,y) \in g$. Then $(a_1,y) \in g$, $(a_2,y) \in g$ implies that $a_1 = a_2 \in A$.

So, $(b_1, a_1) \in \alpha$, $(b_2, a_2) \in \alpha$ implies that $b_1 = b_2$ and consequently $(x, b_1) \in f$. $(x', b_2) \in f$ implies x = x'. Hence $(x, y) \in f \in g$, $(x', y) \in f \in g$ implies that x = x'. Therefore $f \in g \in J(A,B)$. Also, $(f \in g) \beta h = f \in (g \beta h)$. Indeed, $(a,b) \in (f \in g) \beta h$ if and only if there exist $a_1 \in A$, $b_1 \in B$ such that $\{(a,b_1) \in f \in g\}$, $(b_1,a_1) \in \beta$, $(a_1,b) \in h$ if and only if there exist $a_2 \in A$, $b_2 \in B$ such that $\{(a,b_2) \in f, (b_2,a_2) \in \alpha, (a_2,b_1) \in g\}$, $(b_1,a_1) \in \beta$, $(a_1,b) \in h$ if and only if $(a,b_2) \in f$, $(b_2,a_2) \in \alpha$, $\{(a_2,b_1) \in g, (b_1,a_1) \in \beta, (a_1,b) \in h\}$ if and only if $(a,b_2) \in f$, $(b_2,a_2) \in \alpha$, $(a_2,b_1) \in g$, if and only if $(a,b_2) \in f$, $(a_2,b_1) \in g$ if and only if $(a,b_2) \in f$, $(a_2,b_1) \in g$ if and only if $(a,b_2) \in f$, $(a_2,b_1) \in g$ if and only if $(a,b) \in f \in g$.

Theorem (2. 3) : J(A, B) is an inverse Γ -semigroup.

Proof. From Lemma (2.2) we know that J (A, B) is a Γ -semigroup, where $\Gamma = J$ (B,A). First we shall prove that J (A, B) is a regular Γ -semigroup.

Let $f \in J$ (A, B). Then $f : dom f \rightarrow ran f$ is one-one. Let $f^{-1} : ran f \rightarrow dom f$ be such that $ff^{-1} = 1_{dom f}$ and $f^{-1} f = 1_{ran f}$, where $1_{dom f}$ denotes identity mapping on dom f. It

is immediate that $f^{-1} \in J(B,A)$. Now $f = f f^{-1} f f$ shows that $f \in f \Gamma J(A,B) \Gamma f$. Thus J(A,B) is regular. Now to prove that J(A,B) is an inverse Γ -semigroup it is sufficient (from THEOREM 2.1) to show that any two α -idempotent of J(A,B) are α commutative where $\alpha \in \Gamma$. So we want to locate α -idempotents of J(A,B).

If an element $f \in J(A,B)$ be α -idempotent then $f \propto = 1_X$, where X = dom f and conversely if $f \propto = 1_X$ where X = dom f then f is α -idempotent. Now let f, h be any two α -idempotents in J(A,B) We shall prove that $f \propto h = h \propto f \cdots (1)$.

Now f $\alpha = 1_X$ where $X = \text{dom f and h } \alpha = 1_Y$ where Y = dom h. Then

 $dom[f \& h] = dom[1_X h] = [X \cap Y] 1_X^{-1} = X \cap Y$

 $ran[f \lessdot h] = ran[l_X h] = [X \cap Y] h$

$$\begin{split} & \text{dom} \; \{\; h \ll f\; \} = \; \text{dom} \; [\; 1_Y \; f\;] = [\; Y \; \cap \; X \;] \; 1_Y^{-1} = \; Y \; \cap \; X \; = X \; \cap \; Y \end{split}$$
 $& \text{ran} \; \{h \ll f\} = \; \text{ran} \; [1_Y \; f] = [Y \cap X] \; f = [X \cap Y] \; f \end{split}$

We shall now show that $[X \cap Y] f = [X \cap Y] h$.

If possible let $[X \cap Y] f \neq [X \cap Y] h$. Then $[X \cap Y] f \neq [X \cap Y] h \neq [X \cap Y$

Then $[X \cap Y] \mid_X \neq [X \cap Y] \mid_Y$ Then $X \cap Y \neq X \cap Y$, which is absurd. Hence such and half have same domain and range. Let $a \in X \cap Y$. Then a = a implies $al_Y = al_X$ implies $al_A = af_A$ implies $af_A = af_A$ imp

LEMMA (2.4): Let M be an inverse Γ -semigroup. If e and f be two idempotents of M such that exe = e, fyf = f, exf = eyf, fye = fxe, then exf = fxe.

Proof. Let $a \in V_u^V(exf)$. Then exfuavexf = exf and avexfua = a. Now fuavexfyuave = fuave. So, fuave is an x-idempodent. Also, exfyfuavexexf = exf and fuavexexfyuave= fuave. Hence $exf \in V_x^V(fuave)$, . . (1). Again fuavexfuaveyfuave = fuav (exf) uav eyf) uave = fuav (exf) uav (exf) uave = fuavexfuave = fuave.

Similarly, fuaveyfuavexfuave = fuave. So, fuave ϵV_X^y (fuave) . . . (2). From (1) and (2) $\exp = \frac{1}{2} \exp (\operatorname{since} M \operatorname{is} \operatorname{an inverse} \Gamma - \operatorname{semigroup})$. Therefore $\operatorname{exf} \operatorname{is} \operatorname{an} \operatorname{x-idempotent}$ of M. Similarly fixe is an x-idempotent of M. Now exfyfixexexf = $\operatorname{exfixexf} = \operatorname{exf} \operatorname{and}$ freexexfyfixe = fixexfixe = fixe. Hence fixe $\epsilon V_y^x(\operatorname{exf})$, But $\operatorname{exf} \epsilon V_y^x(\operatorname{exf})$. So, $\operatorname{exf} = \operatorname{fixe}$. This completes the proof.

LEMMA (2.5): Let M be a regular $\lceil -s \rceil$ -semigroup and T be a $\lceil \cdot -s \rceil$ -semigroup. Let (f,g) be a homomorphism from $(M, \lceil \cdot)$ onto $(T, \lceil \cdot)$. Let e' be an x' -idempotent of T. Then e'f contains an idempotent of M

Proof. Let a ϵ M be such that af = e' = e'x'e', where $x'\epsilon \vdash '$. Let $x \in \vdash$ be such that xg = x'. Now let us consider the element axa. As M is a regular \vdash —semigroup there exist $c \in M$ and $y,z\epsilon \vdash$ such that axayczaxa = axa and czaxayc = c. Now aycza is an x—idempotent in M since ayczaxaycza = aycza

Also, (ayazı)
$$f = \iota f$$
) (yg) (af) (zg) (\(\infty f\)) = e'x'e' (yg) (cf) (zg) e'x'e'
= (axaf) (yg) (cf) (zg) (axaf) = (axayczaxa)f = (axa) f
= e'.

Hence e'f-1 contains an idempotent of M.

LEMMA (26): Let M be a regular Γ —semigroup and let M' be a Γ -semigroup. Let (f, g) be a homomorphism from (M, Γ) onto (M', Γ '). Then M' is a regular Γ '—semigroup.

Proof. Let a'=af be an element of M' where $a \in M$. Since M is a regular Γ —semigroup there exist $b \in M$ and $x, y \in \Gamma$ such that a = axbya. Then a' = af = (axbya) f = (af)(xg)(bf)(yg)(af)=a'(xg)(bf)(yg) a'. Thus a' is regular. Hence M' is a regular Γ' —semigroup.

Theorem (2.7): Let M be an inverse Γ —semigroup and M' be a Γ' —semigroup. Let (f,g) be a homomorphism from (M, Γ) onto (M',Γ') . Then M' is an inverse Γ' —semigroup. Moreover, in any homomorphism the (x,y) inverse of an element of M is mapped into the corresponding inverse of the image of the element.

Proof. By LEMMA (2.6) M' is a regular Γ' —semigroup. We shall show that any two x'—idemotents of M' are x'—commutative, where $x' \in \Gamma'$. Let e_1' , e_2' be two x'—idempotents of M'. Since (f,g) is onto homomorphlsm there exist e_1 and e_2 of M and $x \in \Gamma$ suce that e_1 and e_2 are x—idempotents of M and e_i $f = e_i'$, xg = x', i = 1,2 [by LEMMA (2.5)]. As M is an inverse Γ —semigroup e_1 $xe_2 = e_2xe_1$. Therefore (e_1xe_2) $f = (e_2xe_1)$ f. So e_1' x' $e_2' = e_2'$ x' e_1' . Hence M' is an inverse Γ' —semigroup. Moreover, for a f M, f indeed, f axaf indeed, f axaf inverse f indeed, f

ACKNOWLEDGEMENT

We express our earnest grattiude to Dr. M. K. Sen for his guidance in the preparation of this paper.

REFERENCE

[1] Sen, M. K. and Saha, N. K,

On Γ —semigroup-1.—to appear in Bull. Cal. Math. Soc.

Department of Mathematics
Pingla Thana Mahabidyalaya
P.O. Maligram, Dist-Midnapore
West Bengal, Pin-721140

Department of Pure Mathematics University of Calcutta 35, Ballygunge Circular Road Calcutta-700 019 India

Received - 30. 3. 1987

1.

2.