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SOME RESULTS ON FIXED POINT THEOREM IN 
COMPACT METRIC SPACE. 

$1: INITRODUCTION ;� 

D. BANDYOPADHYAY 

Let ( X, d ) metric space and T:X ’X be an operator. T is said to be a contraction 

mapping if it satisfies 

1) d(Tx, Ty ) < qd ( x, y ), v x, y e X, O <Kq<l. 

and T is said to be a contractive mapping if it satisfies 

2) d(Tx, Ty ) < qd (x, y ), v X, y e X, q=1. 

A contraction mapping is contractive but the converse is clearly not true. 

If(X, d) be a complete metric space andT:X ’ X satisfies ( 1 ) then by Banach's fixed 

point theorem, T has a unique fixed point but if T: X’ X satisfy ( 2 ) then T need not 

have a fixed point. 

Again if ( X, d ) is a compact matric space and T: X’ X satisfies ( 2) then T has a 

unique fixed point. Moreover, it follows from this fact 1hat on a compact metric space the 

notions contraction and of contractive mappings coincide. 

THEOREM-A : ( Fisher) 

On compact metric space, many authors proved fixed point theorems using various 

contractive type of mappings. Of them, B. Fisher [ 3 ] proved the following theorem using 

Contractive type mapping yielding a unique fixed point. 

If T is a continuous mapping ofa compact metric sapce ( X, d ) into itsclf such that 

d(Tx, Ty )<#[d(x, Tx ) + d(y, Ty )1 
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lor all x, ye X with x y, then T has a unique fixed point. 

S. K. Chatterjca [ 1 | proved the following theorcm involving G. Hardy and T. Rogers i4y 
type contractive mapping yiclding a unique fixed point. 
THEOREM ; B : (Chatterjea ) -

d(Tx, Ty )<a, d(x, y) 
If T is a continuous mapping of a compact metric space ( X, d ) into itself such that 

+a, d ( x, Tx ) + a, d (y Ty) + a, d (x, Ty ) + a, d ( y, Tx) 

for all distinct x, y e X, a, > 
point. 

D. Bandyopadhyay 

S 2: FIXED POINT THEOREMS : 

THEOREM-1 : 

with 

In fact, the theorem of Fisher is a particular case of the theorem due to Chatterjea. 

In this paper we have tried to make extension of the results of Fisher and Chatterjea. 

0(i = 1, 2, , 5 ) and E a, = 1, then T has a unique fixed 

In this section we have proved the following theorems. 

5 

Let (X, d) be a compact metric space and T, T, be a pair of continuous self 
mappings defined on X for which there exists non-negative real numbers q. (j=1, 2,..,5) 

q, = I such that d(T, x, T, y) < q, d( x, y ) + 4: d ( x, Tx ) + q3 d (y, Ty) 

+ q, d( x, Ty ) + qs d (y, Tx ) for all distinct x, y e X, then T, and T, have a unique 

common fixed point in X. 

PROOF: We first define a function F:X ’ R, as follows : 

F (X= d ( x, T, x ), y x e X. Clearly F is continuous. 
Let F( z ) = inf { F (x):Xe X} which must exist since X is compact. 
Now, if possible, suppose that z # T 2 and T, T z T, z. Then F (T. T, z ) 

d (T, T, z, T, T, T, z ) = d (T, T, T, 2, T, T, z ) 

+ q, d (T, T, z, 
<g, d( T, T, Z, T, z) + 42 d(T, T, Z, T, T, T, 2) + 4, d (T, 2, T, T, z ) 

T, T, z) + 9, d(T, z, T, T, T, z ) 
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U- q: -- 46) Fl, l, Z ) <(l- q, - 4) d(T, z, T, T, z) 

Again, by symmetry, wo have 

(1-4 4) F(T, T Z ) (l-- 4 
Adding () and (ii) we get 

F(T, T, z ) <d(Tz, T, T, z ) 
(2-(9: t 9% t 4 t 9%)}F(T, T, z) < (2-(qa 4 4, + 4, + q, ) }d ( T,z, T, T, Z ) 

Now. d ( Tz, T, T, z)< 4, d(2, T, 2) + qa d ( z, T, z ) + 9, d (T,z, T, T, 2) 

By symmetry, we have 

> (1-q394) d(T2, T: T, z) <(1-43-q6) F (z). 

Adding these two we get 

(1-4:-4, ) d(Tz, T, T, z <(1-q-94) F (2). 

d(T,z, T, T,z) < F(z) 

Hence T, T,z = T,z and T,z = Z. 

Therefore, T,z = Z. 

46) d(T, 7, T, T, z ) 

+ 4, d ( z, T, T, z) + q, d (T,z, T, z) 

{2-( 4: t 43 t q4 t 95 )}d(Tz, T, T, z ) <í2-(qz + 93 + q4 + 45 )} F (z) 

From () and (II) we get F(T, T,z) < F(z ) - which is a contradiction. 

Consequently, z is a common fixed point of T, and T, both. 

We shall now show the unicity of the fixed point z. 

Then, d (2, u ) = d( T,z, T,u) 

() 

Suppose that u (z) eX is another common fixed point of T, and T,. 

=(4, t 94 t q, ) d (z, u) = (l-43 

(92 + 43) d (z, u ) < 0-a contradiction. 

So, d ( z, u) = 0 =’ 2 = u. 

(II) 

Ihis completes the proof of the theorem. 

.....) 

< 9i d( z, u) + q, d ( z, T, z ) + 45 d ( u, T,u)+ 4, d(Z, Tzu) t q, d (u, T,z ) 

4: ) d ( 2, u ) 

Consequently, z is the unique common fixed point of T, and T,. 

... (1) 
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NOTE : 

I) If we take T, =T, Tand q, = 4, = 4; = O and 

4: = q: =}then we get theoren-A. 

II) If we take T, = T, T we get theorem-B. 

THEOREM - 2: If T be a napping of a compact metric space ( A, d) into itself sut 

that for some fixed positive integer m, T" satisfies the inequality. 

d (T"x, T"y) < qd (X, y) + qgd ( x T"x ) + q,d (y, T"" y)+ 4 d( x, Tn 

+ q5 d (y, T"X) 

for all x, y e X, x*y where qi 0 with 

has a unique fixed point in X. 

D. Bandyopadhyay 

= Z, we haye 

Hence, Tz = z. 

PROOF : In view of Theorem-B, T" has a unique fixed point z in X, Now, since T"2 

NOTE : 

Tz =T( T"z) = Tm ( Tz) = Tz ’ Tz is a fixed point of T in X, but T" has a unique 
fixed point z in X. 

Therefore, z, being unique, is a unique fixed point of T in X. 

Tx = 0 if 0< x < 

IM 

=if 3<x<1. 

We can show, by an example, that Theorem-2 is stronger than Theorem-B. 
EXAMPLE ;- We take X-R and we define T : R R as follows : 

So, T'x = 0, y Xe [ 0, 1 ]. 

a, = l and if T" is continuous then T 

y ) 

Clearly, 0 is a unique fixed point of T and also of T. 

Following is the more general thecrem: 

It is easy to verify that the incquality of Theorem-2 is satisfied by T² for m=2 but not by T. 



THEOREM-3 : If T, and T, be two mappings on a compact mctric Space ( X, d) nto itself 
such that for some positivc integers r, s, T; and T, satisfy the incquality 
d(T, 
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. T Y) < 4,d(x, y ) + q, d ( x, T x) + q, d( y, T y) + 

Car all X. ve X with x # y, where q ( i=1,2, . ..5)> 0, 

follows : 

then T, and T, have a unique common fixed point in X. 

q, d( X, T, y) + 9, d(y, T; x) 

Xgn41 = T 

pROOF: Let xe X be an arbitrary element. We now define a sequence { x,}CXas 

X 2n 

sequence X,} such that Lim x. = u for some ue X. 

Since, X is compact and x,e X, yn > 1, we can always select a subsequence { x, } from the 

If possible, suppose that T u # u. 

Then d(u, T u)<d(u, X2n, )+ d(X2n, 

4 = 1, 

T,' u) 

= d (u, xn ) + d (T; u, Tz X2n.-1 

S 
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<d (U, X2n, )+ 4 d( u, Xn.-)+ 4, d(u, T, u ) 
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q,d d ( u, Xn. )+ 9% d( X2n,-1 

Hence, we have T u = u. 

Now proceeding to the limit as i , we have 

Likewise, we can show that 

Then 

(1� q: - 9,) d (u, T,' u)< 0 --which is a contradiction. 

D. Bandyapadhyay 

)+ qa d (u, T, u) + q, d (X2n-
T,'u ). 

We now show the unicity of the fixed point u. 

T, u = u. 

Suppose, now, that p( u )e X is another common fixed point of T, and T, both. 

Now, since, T,' u= u, 

point u in X. 

d(p, u) = d(T' P, T u) < 4, d (p, u ) + q, d (p, T, P)+ 43 d (P, T; P) 

=(9, + 94 + 95) d (p, u ) =(1 42 - 93 ) d (P, u) 

’(4: + 93) d(P, u)<0--which is a contradiction, and thereby yielding p = u. 

Consequently, u is a common fixed point of T; and T, in X. 

Similarly, we can show that T,u= u. 

1 2n, )t 

we have T, u=T,(T,' u = T (T, u ) -

+ q, d ( u, T, p) + 45 d (p, T u ) 

this implies that T, u is another fixed point of T,' in X, but T has only one fixed 

Hence, this enables to conclude that T,u=u. 

of T, and T, in X also. This yields u = z. 

If z is another common fixed point of T, and T, in X, then clearly it is a common fixed Poui 
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Hence, u is the unique common fixed point of T, and T, in X. 
This completes the proof of the theorem, 

§3: Let (X.d) be a metric spaçe, Let T:X- X be a mapping which is said to nossess the property (A) if it satisfes 

A (Tx,Ty)< ad (x,1x) + bd (y,Ty) + cd (x.v) 
for all x,y eX, a,b,c >0, a +b+cs1. 

According to Kannan ( 1972 ) |5), an operator T:X ’ X is said to have the aranerty (B) on ECX if for every closed subset F of E containing more than 
element and is self mapped by , there exists an x e F such that 

d ( x, Tx) < sup d (y, Ty ). 
ye F 

THEOREM-C : 

Kannan ( 1972 )[5] studied this property ( B) of an operator T in connection 
with the existence of fixed point. With the above notions, M. K. Chakraborty [21 

proved the following 

Let ( X, d ) be a metric space. 
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Let ( X, d ) be a compact metric space and let T: X ’ X be a mapping having 
Properties (A) and (B) over X. Let for any non-emnpty subset E of X which is 

napped into itself by T, p, p imply Tp, ’p for any sequence { P,} CE. Then 

T has fixed point in X provided that b1. The fixed point is unique 

5 

One 

d Kegers [4] type of contraction if d (Tx, Ty ) <41 d (X, y ) + 4:d (x, Tx) + 

1,2, 3, ..., 5) 0, 2qi <1. -(i) 

3 d ( y. Ty ) + d, d (X. Tv ) 4 dr d( y, Tx ) holds for all x, y eX where q, (i= 

i=l 

An operator T:X’ X is said to satisfy Hardy 

We shall prove the following theorem in fixcd point in compact metric space 

if c#1. 
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by weaken'ng the condition (i) above, by allowing 2 q =l--- (ii ) which cxtends 

the theorem-C. 

D. Bandyopadhyay 

We shall call (i) and ( ii ) together the property ( *). 

THEOREM ;-1 :Let (X, d ) be compact metric space and let T be a self mapping defined 

X. Then if T be such that for ans. 

T, p, -> p imply P, ’ p whera 

fixed point will be unique provided 

On X satisfying the properties(*) and (B) over 

non-empty subset E of X, mapped into itself by 

{P,}C E, then T has a fixed point in X. This 

that q 0 or 43 >0. 

which T:K ’ K. 

i=1 

PROOF: We consider the space X(K) of all non-empty c'osed subsets K of X for 

We now deine a partial ordering in X( K) by the following rule : 
K.TK 

With this definition, the space X( K) will be partially ordered set and 

hence by Kuratowski-Zorn lemma., there must exists a minimal element in X(K) 

We now propose to show that K contains only one element. 

a non-empty proper 

Xe Ky. 

If possible, suppose, K consists of more than One element. Then by the 

property (B), there exists an x, K such that d( Xo, Tx, ) = r < sup d (y, Ty ) 
(1) 

Now consider the set K ={Xe K:d (x, Tx )sr}. Then by (1 ), BË 

subset of K. We shall first show that T:K, K,. Take a 

Now. d (Tx, T² x) = d (Tx, TTx ) 9, d (X, Tx) + q, d ( x, Tx ) + q, d (Tx, I1*7 
t q, d ( x, TTx) + 95 d ( Tx, Tx) 

which will be non-empty closed and invariant under T. Let it be denoted by K. 

yek 
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>(-9-4) d( Tx, T²x )<l-4 -4%) d ( x, Tx ). 

By symmetry, we can write 

sides, We get 

(l-9-95 ) d( Tx, T'x)<(1-4;-94) d(x, Tx ). 

Adding (2) and (3) and cancelling the non-negatiye constant terms form both 

d( (Tx, T'% ) <d (X, Tx) <r’ Tx e K,. 

This shows that K, is mapped into itself by T 

We shall now show that K, is closed. 

Hence by assumsion, Ts, - S. 

Choose any sequence S, }cK1 Such that s, -’ s as n’o where s e K. 

Now, d ( $, Ts ) <d($, Ts, ) + d( Tsp, Ts ) 

Now passing to 

<d(s, Ts, ) + 4i d (Sn, S ) 4: + d( S,, Ts, ) + 43 d ( s, Ts ) 

+ 9, d( S, Ts) + 4, d ( s, Ts, ) 

<(I+ q5 ) d ( s, Ts, ) + 91 d (Sp, s)+ 42 I + 4, d ( s, Ts ) + 
9, d ( S, Ts 

(1-4,-q, ) d (s, Ts ) <4 I, 

the limit as n ’ o we have after rearrangement 

(l-q,-q5) d (s,Ts) < 43T. 
In a similar way we can write by interchanging the roles of s, and s, 

Adling these two we get 
2-(9:+43+44+95)} d (s,Ts) < (4: +43) r 

’d(s,Ts) <2-(4:t t93+44tq:)} 
Hence K, is closed. 

.(2) 

...(3) 

-...(5) 

(92+4:) 

fixed point of T in X. 

(4) 

r<r,’ Se K. 
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Thus K, is a non-empty closed proper subset of K with T : K, -’ K, and so K, e X(K). 
This coontradicts the minimality of K in X (K), Hence K contains only one point, which is a 
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Now suppose that u e K is this fixed point of T. 

Let v (#u) e K be another fixed point of T. Then 

d(u.v) d(Tu,Tv) 

’u =V. 

D. Bandyopadhyay 

-’ (q:9:) d (u.v) < 0 ’d (u,v) = 0 as q: 

g,d (u,v) + qd (u,Tu) + 4.d (v,Tv) + 9:d (u, lv) 4,d (v,Tu 

<(l-q:-q:) d (u,v), 

Consequently, T has a unique fixed point in X, 
This completes the proof of the theorem. 
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